Loading…

Cellulose Acetate‐Based High‐Electrolyte‐Uptake Gel Polymer Electrolyte for Semi‐Solid‐State Lithium‐Oxygen Batteries with Long‐Cycling Stability

Lithium‐oxygen batteries have received great research interest owing to their ultrahigh theoretical energy density and are considered as one of the promising secondary batteries. However, there are still some challenges in their practical application, like liquid organic electrolyte evaporation in t...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry, an Asian journal an Asian journal, 2022-11, Vol.17 (21), p.e202200712-n/a
Main Authors: Xu, Zelin, Guo, Dingcheng, Liu, Ziqiang, Wang, Zhiyan, Gu, Zhi, Wang, Da, Yao, Xiayin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3502-1dddf03b563e3a9b83dd47dada3f465fcdfeb86411e86c092f613daaec5a1e2a3
cites cdi_FETCH-LOGICAL-c3502-1dddf03b563e3a9b83dd47dada3f465fcdfeb86411e86c092f613daaec5a1e2a3
container_end_page n/a
container_issue 21
container_start_page e202200712
container_title Chemistry, an Asian journal
container_volume 17
creator Xu, Zelin
Guo, Dingcheng
Liu, Ziqiang
Wang, Zhiyan
Gu, Zhi
Wang, Da
Yao, Xiayin
description Lithium‐oxygen batteries have received great research interest owing to their ultrahigh theoretical energy density and are considered as one of the promising secondary batteries. However, there are still some challenges in their practical application, like liquid organic electrolyte evaporation in the semi‐open system and instability in the high‐voltage oxidizing environment. In this work, a cellulose acetate‐based gel polymer electrolyte (CA@GPE) is proposed, whose cross‐linked microporous structure ensures the ultrahigh liquid electrolyte uptake of 2391%. The prepared CA@GPE exhibits a high lithium‐ion transference number of 0.595, a satisfying ionic conductivity of 0.47 mS cm−1 and a wide electrochemical stability window up to 5.0 V. The Li//Li symmetric cell employing CA@GPE could cycle stably over 1200 h. The lithium‐oxygen battery with CA@GPE presents a superb cycling lifetime of 370 cycles at 0.1 mA cm−2 under 0.25 mAh cm−2. This work offers a possible strategy to realize long‐cycling stability lithium‐oxygen batteries. A semi‐solid‐state cellulose acetate‐based gel polymer electrolyte (CA@GPE) with an ultrahigh liquid electrolyte uptake of 2391% is proposed to relieve the leakage and volatility of liquid organic electrolytes in the semi‐open system of lithium‐oxygen batteries at ambient temperature. The lithium‐oxygen battery with CA@GPE exhibits excellent long‐cycling stability as well as superior reversibility.
doi_str_mv 10.1002/asia.202200712
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2708734054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753257370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3502-1dddf03b563e3a9b83dd47dada3f465fcdfeb86411e86c092f613daaec5a1e2a3</originalsourceid><addsrcrecordid>eNqFkctKAzEUhgdRsF62rgNu3LTmMrcu2-KlUKhQBXdDmpxpUzOTmmTQ2fkIvoHv5pOYWlFx4-qck__7D-H8UXRCcI9gTM-5U7xHMaUYZ4TuRB2Sp6QbZ-R-97un-X504NwK44Tift6J3kagdaONAzQQ4LmH95fXIXcg0bVaLMNwoUF4a3T7Kd2tPX8AdAUa3YS3Ciz6BaDSWDSDSgVyZrSSm7pZiibKL1VThXn63C6gRkPuPVgFDj0FCU1MvQjiqBVa1QsUTHOllW-Por2SawfHX_Uwuru8uB1ddyfTq_FoMOkKlmDaJVLKErN5kjJgvD_PmZRxJrnkrIzTpBSyhHmexoRAngrcp2VKmOQcRMIJUM4Oo7Pt3rU1jw04X1TKiXAbXoNpXEEznGcsxkkc0NM_6Mo0tg6_C1TCaJKxDAeqt6WENc5ZKIu1VRW3bUFwscmr2ORVfOcVDP2t4UlpaP-hi8FsPPjxfgAiB6RJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753257370</pqid></control><display><type>article</type><title>Cellulose Acetate‐Based High‐Electrolyte‐Uptake Gel Polymer Electrolyte for Semi‐Solid‐State Lithium‐Oxygen Batteries with Long‐Cycling Stability</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Xu, Zelin ; Guo, Dingcheng ; Liu, Ziqiang ; Wang, Zhiyan ; Gu, Zhi ; Wang, Da ; Yao, Xiayin</creator><creatorcontrib>Xu, Zelin ; Guo, Dingcheng ; Liu, Ziqiang ; Wang, Zhiyan ; Gu, Zhi ; Wang, Da ; Yao, Xiayin</creatorcontrib><description>Lithium‐oxygen batteries have received great research interest owing to their ultrahigh theoretical energy density and are considered as one of the promising secondary batteries. However, there are still some challenges in their practical application, like liquid organic electrolyte evaporation in the semi‐open system and instability in the high‐voltage oxidizing environment. In this work, a cellulose acetate‐based gel polymer electrolyte (CA@GPE) is proposed, whose cross‐linked microporous structure ensures the ultrahigh liquid electrolyte uptake of 2391%. The prepared CA@GPE exhibits a high lithium‐ion transference number of 0.595, a satisfying ionic conductivity of 0.47 mS cm−1 and a wide electrochemical stability window up to 5.0 V. The Li//Li symmetric cell employing CA@GPE could cycle stably over 1200 h. The lithium‐oxygen battery with CA@GPE presents a superb cycling lifetime of 370 cycles at 0.1 mA cm−2 under 0.25 mAh cm−2. This work offers a possible strategy to realize long‐cycling stability lithium‐oxygen batteries. A semi‐solid‐state cellulose acetate‐based gel polymer electrolyte (CA@GPE) with an ultrahigh liquid electrolyte uptake of 2391% is proposed to relieve the leakage and volatility of liquid organic electrolytes in the semi‐open system of lithium‐oxygen batteries at ambient temperature. The lithium‐oxygen battery with CA@GPE exhibits excellent long‐cycling stability as well as superior reversibility.</description><identifier>ISSN: 1861-4728</identifier><identifier>EISSN: 1861-471X</identifier><identifier>DOI: 10.1002/asia.202200712</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cellulose acetate ; Chemistry ; Cycles ; gel polymer electrolyte ; high electrolyte uptake ; Ion currents ; Lithium ; lithium-oxygen battery ; long-cycling stability ; Nonaqueous electrolytes ; Open systems ; Oxidation ; Oxygen ; Polymers ; Stability ; Storage batteries</subject><ispartof>Chemistry, an Asian journal, 2022-11, Vol.17 (21), p.e202200712-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3502-1dddf03b563e3a9b83dd47dada3f465fcdfeb86411e86c092f613daaec5a1e2a3</citedby><cites>FETCH-LOGICAL-c3502-1dddf03b563e3a9b83dd47dada3f465fcdfeb86411e86c092f613daaec5a1e2a3</cites><orcidid>0000-0002-2224-4247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Zelin</creatorcontrib><creatorcontrib>Guo, Dingcheng</creatorcontrib><creatorcontrib>Liu, Ziqiang</creatorcontrib><creatorcontrib>Wang, Zhiyan</creatorcontrib><creatorcontrib>Gu, Zhi</creatorcontrib><creatorcontrib>Wang, Da</creatorcontrib><creatorcontrib>Yao, Xiayin</creatorcontrib><title>Cellulose Acetate‐Based High‐Electrolyte‐Uptake Gel Polymer Electrolyte for Semi‐Solid‐State Lithium‐Oxygen Batteries with Long‐Cycling Stability</title><title>Chemistry, an Asian journal</title><description>Lithium‐oxygen batteries have received great research interest owing to their ultrahigh theoretical energy density and are considered as one of the promising secondary batteries. However, there are still some challenges in their practical application, like liquid organic electrolyte evaporation in the semi‐open system and instability in the high‐voltage oxidizing environment. In this work, a cellulose acetate‐based gel polymer electrolyte (CA@GPE) is proposed, whose cross‐linked microporous structure ensures the ultrahigh liquid electrolyte uptake of 2391%. The prepared CA@GPE exhibits a high lithium‐ion transference number of 0.595, a satisfying ionic conductivity of 0.47 mS cm−1 and a wide electrochemical stability window up to 5.0 V. The Li//Li symmetric cell employing CA@GPE could cycle stably over 1200 h. The lithium‐oxygen battery with CA@GPE presents a superb cycling lifetime of 370 cycles at 0.1 mA cm−2 under 0.25 mAh cm−2. This work offers a possible strategy to realize long‐cycling stability lithium‐oxygen batteries. A semi‐solid‐state cellulose acetate‐based gel polymer electrolyte (CA@GPE) with an ultrahigh liquid electrolyte uptake of 2391% is proposed to relieve the leakage and volatility of liquid organic electrolytes in the semi‐open system of lithium‐oxygen batteries at ambient temperature. The lithium‐oxygen battery with CA@GPE exhibits excellent long‐cycling stability as well as superior reversibility.</description><subject>Cellulose acetate</subject><subject>Chemistry</subject><subject>Cycles</subject><subject>gel polymer electrolyte</subject><subject>high electrolyte uptake</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>lithium-oxygen battery</subject><subject>long-cycling stability</subject><subject>Nonaqueous electrolytes</subject><subject>Open systems</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Polymers</subject><subject>Stability</subject><subject>Storage batteries</subject><issn>1861-4728</issn><issn>1861-471X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkctKAzEUhgdRsF62rgNu3LTmMrcu2-KlUKhQBXdDmpxpUzOTmmTQ2fkIvoHv5pOYWlFx4-qck__7D-H8UXRCcI9gTM-5U7xHMaUYZ4TuRB2Sp6QbZ-R-97un-X504NwK44Tift6J3kagdaONAzQQ4LmH95fXIXcg0bVaLMNwoUF4a3T7Kd2tPX8AdAUa3YS3Ciz6BaDSWDSDSgVyZrSSm7pZiibKL1VThXn63C6gRkPuPVgFDj0FCU1MvQjiqBVa1QsUTHOllW-Por2SawfHX_Uwuru8uB1ddyfTq_FoMOkKlmDaJVLKErN5kjJgvD_PmZRxJrnkrIzTpBSyhHmexoRAngrcp2VKmOQcRMIJUM4Oo7Pt3rU1jw04X1TKiXAbXoNpXEEznGcsxkkc0NM_6Mo0tg6_C1TCaJKxDAeqt6WENc5ZKIu1VRW3bUFwscmr2ORVfOcVDP2t4UlpaP-hi8FsPPjxfgAiB6RJ</recordid><startdate>20221102</startdate><enddate>20221102</enddate><creator>Xu, Zelin</creator><creator>Guo, Dingcheng</creator><creator>Liu, Ziqiang</creator><creator>Wang, Zhiyan</creator><creator>Gu, Zhi</creator><creator>Wang, Da</creator><creator>Yao, Xiayin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2224-4247</orcidid></search><sort><creationdate>20221102</creationdate><title>Cellulose Acetate‐Based High‐Electrolyte‐Uptake Gel Polymer Electrolyte for Semi‐Solid‐State Lithium‐Oxygen Batteries with Long‐Cycling Stability</title><author>Xu, Zelin ; Guo, Dingcheng ; Liu, Ziqiang ; Wang, Zhiyan ; Gu, Zhi ; Wang, Da ; Yao, Xiayin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3502-1dddf03b563e3a9b83dd47dada3f465fcdfeb86411e86c092f613daaec5a1e2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cellulose acetate</topic><topic>Chemistry</topic><topic>Cycles</topic><topic>gel polymer electrolyte</topic><topic>high electrolyte uptake</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>lithium-oxygen battery</topic><topic>long-cycling stability</topic><topic>Nonaqueous electrolytes</topic><topic>Open systems</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Polymers</topic><topic>Stability</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zelin</creatorcontrib><creatorcontrib>Guo, Dingcheng</creatorcontrib><creatorcontrib>Liu, Ziqiang</creatorcontrib><creatorcontrib>Wang, Zhiyan</creatorcontrib><creatorcontrib>Gu, Zhi</creatorcontrib><creatorcontrib>Wang, Da</creatorcontrib><creatorcontrib>Yao, Xiayin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry, an Asian journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zelin</au><au>Guo, Dingcheng</au><au>Liu, Ziqiang</au><au>Wang, Zhiyan</au><au>Gu, Zhi</au><au>Wang, Da</au><au>Yao, Xiayin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellulose Acetate‐Based High‐Electrolyte‐Uptake Gel Polymer Electrolyte for Semi‐Solid‐State Lithium‐Oxygen Batteries with Long‐Cycling Stability</atitle><jtitle>Chemistry, an Asian journal</jtitle><date>2022-11-02</date><risdate>2022</risdate><volume>17</volume><issue>21</issue><spage>e202200712</spage><epage>n/a</epage><pages>e202200712-n/a</pages><issn>1861-4728</issn><eissn>1861-471X</eissn><abstract>Lithium‐oxygen batteries have received great research interest owing to their ultrahigh theoretical energy density and are considered as one of the promising secondary batteries. However, there are still some challenges in their practical application, like liquid organic electrolyte evaporation in the semi‐open system and instability in the high‐voltage oxidizing environment. In this work, a cellulose acetate‐based gel polymer electrolyte (CA@GPE) is proposed, whose cross‐linked microporous structure ensures the ultrahigh liquid electrolyte uptake of 2391%. The prepared CA@GPE exhibits a high lithium‐ion transference number of 0.595, a satisfying ionic conductivity of 0.47 mS cm−1 and a wide electrochemical stability window up to 5.0 V. The Li//Li symmetric cell employing CA@GPE could cycle stably over 1200 h. The lithium‐oxygen battery with CA@GPE presents a superb cycling lifetime of 370 cycles at 0.1 mA cm−2 under 0.25 mAh cm−2. This work offers a possible strategy to realize long‐cycling stability lithium‐oxygen batteries. A semi‐solid‐state cellulose acetate‐based gel polymer electrolyte (CA@GPE) with an ultrahigh liquid electrolyte uptake of 2391% is proposed to relieve the leakage and volatility of liquid organic electrolytes in the semi‐open system of lithium‐oxygen batteries at ambient temperature. The lithium‐oxygen battery with CA@GPE exhibits excellent long‐cycling stability as well as superior reversibility.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asia.202200712</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2224-4247</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1861-4728
ispartof Chemistry, an Asian journal, 2022-11, Vol.17 (21), p.e202200712-n/a
issn 1861-4728
1861-471X
language eng
recordid cdi_proquest_miscellaneous_2708734054
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Cellulose acetate
Chemistry
Cycles
gel polymer electrolyte
high electrolyte uptake
Ion currents
Lithium
lithium-oxygen battery
long-cycling stability
Nonaqueous electrolytes
Open systems
Oxidation
Oxygen
Polymers
Stability
Storage batteries
title Cellulose Acetate‐Based High‐Electrolyte‐Uptake Gel Polymer Electrolyte for Semi‐Solid‐State Lithium‐Oxygen Batteries with Long‐Cycling Stability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellulose%20Acetate%E2%80%90Based%20High%E2%80%90Electrolyte%E2%80%90Uptake%20Gel%20Polymer%20Electrolyte%20for%20Semi%E2%80%90Solid%E2%80%90State%20Lithium%E2%80%90Oxygen%20Batteries%20with%20Long%E2%80%90Cycling%20Stability&rft.jtitle=Chemistry,%20an%20Asian%20journal&rft.au=Xu,%20Zelin&rft.date=2022-11-02&rft.volume=17&rft.issue=21&rft.spage=e202200712&rft.epage=n/a&rft.pages=e202200712-n/a&rft.issn=1861-4728&rft.eissn=1861-471X&rft_id=info:doi/10.1002/asia.202200712&rft_dat=%3Cproquest_cross%3E2753257370%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3502-1dddf03b563e3a9b83dd47dada3f465fcdfeb86411e86c092f613daaec5a1e2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2753257370&rft_id=info:pmid/&rfr_iscdi=true