Loading…
Cellulose Acetate‐Based High‐Electrolyte‐Uptake Gel Polymer Electrolyte for Semi‐Solid‐State Lithium‐Oxygen Batteries with Long‐Cycling Stability
Lithium‐oxygen batteries have received great research interest owing to their ultrahigh theoretical energy density and are considered as one of the promising secondary batteries. However, there are still some challenges in their practical application, like liquid organic electrolyte evaporation in t...
Saved in:
Published in: | Chemistry, an Asian journal an Asian journal, 2022-11, Vol.17 (21), p.e202200712-n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3502-1dddf03b563e3a9b83dd47dada3f465fcdfeb86411e86c092f613daaec5a1e2a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3502-1dddf03b563e3a9b83dd47dada3f465fcdfeb86411e86c092f613daaec5a1e2a3 |
container_end_page | n/a |
container_issue | 21 |
container_start_page | e202200712 |
container_title | Chemistry, an Asian journal |
container_volume | 17 |
creator | Xu, Zelin Guo, Dingcheng Liu, Ziqiang Wang, Zhiyan Gu, Zhi Wang, Da Yao, Xiayin |
description | Lithium‐oxygen batteries have received great research interest owing to their ultrahigh theoretical energy density and are considered as one of the promising secondary batteries. However, there are still some challenges in their practical application, like liquid organic electrolyte evaporation in the semi‐open system and instability in the high‐voltage oxidizing environment. In this work, a cellulose acetate‐based gel polymer electrolyte (CA@GPE) is proposed, whose cross‐linked microporous structure ensures the ultrahigh liquid electrolyte uptake of 2391%. The prepared CA@GPE exhibits a high lithium‐ion transference number of 0.595, a satisfying ionic conductivity of 0.47 mS cm−1 and a wide electrochemical stability window up to 5.0 V. The Li//Li symmetric cell employing CA@GPE could cycle stably over 1200 h. The lithium‐oxygen battery with CA@GPE presents a superb cycling lifetime of 370 cycles at 0.1 mA cm−2 under 0.25 mAh cm−2. This work offers a possible strategy to realize long‐cycling stability lithium‐oxygen batteries.
A semi‐solid‐state cellulose acetate‐based gel polymer electrolyte (CA@GPE) with an ultrahigh liquid electrolyte uptake of 2391% is proposed to relieve the leakage and volatility of liquid organic electrolytes in the semi‐open system of lithium‐oxygen batteries at ambient temperature. The lithium‐oxygen battery with CA@GPE exhibits excellent long‐cycling stability as well as superior reversibility. |
doi_str_mv | 10.1002/asia.202200712 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2708734054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753257370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3502-1dddf03b563e3a9b83dd47dada3f465fcdfeb86411e86c092f613daaec5a1e2a3</originalsourceid><addsrcrecordid>eNqFkctKAzEUhgdRsF62rgNu3LTmMrcu2-KlUKhQBXdDmpxpUzOTmmTQ2fkIvoHv5pOYWlFx4-qck__7D-H8UXRCcI9gTM-5U7xHMaUYZ4TuRB2Sp6QbZ-R-97un-X504NwK44Tift6J3kagdaONAzQQ4LmH95fXIXcg0bVaLMNwoUF4a3T7Kd2tPX8AdAUa3YS3Ciz6BaDSWDSDSgVyZrSSm7pZiibKL1VThXn63C6gRkPuPVgFDj0FCU1MvQjiqBVa1QsUTHOllW-Por2SawfHX_Uwuru8uB1ddyfTq_FoMOkKlmDaJVLKErN5kjJgvD_PmZRxJrnkrIzTpBSyhHmexoRAngrcp2VKmOQcRMIJUM4Oo7Pt3rU1jw04X1TKiXAbXoNpXEEznGcsxkkc0NM_6Mo0tg6_C1TCaJKxDAeqt6WENc5ZKIu1VRW3bUFwscmr2ORVfOcVDP2t4UlpaP-hi8FsPPjxfgAiB6RJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753257370</pqid></control><display><type>article</type><title>Cellulose Acetate‐Based High‐Electrolyte‐Uptake Gel Polymer Electrolyte for Semi‐Solid‐State Lithium‐Oxygen Batteries with Long‐Cycling Stability</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Xu, Zelin ; Guo, Dingcheng ; Liu, Ziqiang ; Wang, Zhiyan ; Gu, Zhi ; Wang, Da ; Yao, Xiayin</creator><creatorcontrib>Xu, Zelin ; Guo, Dingcheng ; Liu, Ziqiang ; Wang, Zhiyan ; Gu, Zhi ; Wang, Da ; Yao, Xiayin</creatorcontrib><description>Lithium‐oxygen batteries have received great research interest owing to their ultrahigh theoretical energy density and are considered as one of the promising secondary batteries. However, there are still some challenges in their practical application, like liquid organic electrolyte evaporation in the semi‐open system and instability in the high‐voltage oxidizing environment. In this work, a cellulose acetate‐based gel polymer electrolyte (CA@GPE) is proposed, whose cross‐linked microporous structure ensures the ultrahigh liquid electrolyte uptake of 2391%. The prepared CA@GPE exhibits a high lithium‐ion transference number of 0.595, a satisfying ionic conductivity of 0.47 mS cm−1 and a wide electrochemical stability window up to 5.0 V. The Li//Li symmetric cell employing CA@GPE could cycle stably over 1200 h. The lithium‐oxygen battery with CA@GPE presents a superb cycling lifetime of 370 cycles at 0.1 mA cm−2 under 0.25 mAh cm−2. This work offers a possible strategy to realize long‐cycling stability lithium‐oxygen batteries.
A semi‐solid‐state cellulose acetate‐based gel polymer electrolyte (CA@GPE) with an ultrahigh liquid electrolyte uptake of 2391% is proposed to relieve the leakage and volatility of liquid organic electrolytes in the semi‐open system of lithium‐oxygen batteries at ambient temperature. The lithium‐oxygen battery with CA@GPE exhibits excellent long‐cycling stability as well as superior reversibility.</description><identifier>ISSN: 1861-4728</identifier><identifier>EISSN: 1861-471X</identifier><identifier>DOI: 10.1002/asia.202200712</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cellulose acetate ; Chemistry ; Cycles ; gel polymer electrolyte ; high electrolyte uptake ; Ion currents ; Lithium ; lithium-oxygen battery ; long-cycling stability ; Nonaqueous electrolytes ; Open systems ; Oxidation ; Oxygen ; Polymers ; Stability ; Storage batteries</subject><ispartof>Chemistry, an Asian journal, 2022-11, Vol.17 (21), p.e202200712-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3502-1dddf03b563e3a9b83dd47dada3f465fcdfeb86411e86c092f613daaec5a1e2a3</citedby><cites>FETCH-LOGICAL-c3502-1dddf03b563e3a9b83dd47dada3f465fcdfeb86411e86c092f613daaec5a1e2a3</cites><orcidid>0000-0002-2224-4247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Zelin</creatorcontrib><creatorcontrib>Guo, Dingcheng</creatorcontrib><creatorcontrib>Liu, Ziqiang</creatorcontrib><creatorcontrib>Wang, Zhiyan</creatorcontrib><creatorcontrib>Gu, Zhi</creatorcontrib><creatorcontrib>Wang, Da</creatorcontrib><creatorcontrib>Yao, Xiayin</creatorcontrib><title>Cellulose Acetate‐Based High‐Electrolyte‐Uptake Gel Polymer Electrolyte for Semi‐Solid‐State Lithium‐Oxygen Batteries with Long‐Cycling Stability</title><title>Chemistry, an Asian journal</title><description>Lithium‐oxygen batteries have received great research interest owing to their ultrahigh theoretical energy density and are considered as one of the promising secondary batteries. However, there are still some challenges in their practical application, like liquid organic electrolyte evaporation in the semi‐open system and instability in the high‐voltage oxidizing environment. In this work, a cellulose acetate‐based gel polymer electrolyte (CA@GPE) is proposed, whose cross‐linked microporous structure ensures the ultrahigh liquid electrolyte uptake of 2391%. The prepared CA@GPE exhibits a high lithium‐ion transference number of 0.595, a satisfying ionic conductivity of 0.47 mS cm−1 and a wide electrochemical stability window up to 5.0 V. The Li//Li symmetric cell employing CA@GPE could cycle stably over 1200 h. The lithium‐oxygen battery with CA@GPE presents a superb cycling lifetime of 370 cycles at 0.1 mA cm−2 under 0.25 mAh cm−2. This work offers a possible strategy to realize long‐cycling stability lithium‐oxygen batteries.
A semi‐solid‐state cellulose acetate‐based gel polymer electrolyte (CA@GPE) with an ultrahigh liquid electrolyte uptake of 2391% is proposed to relieve the leakage and volatility of liquid organic electrolytes in the semi‐open system of lithium‐oxygen batteries at ambient temperature. The lithium‐oxygen battery with CA@GPE exhibits excellent long‐cycling stability as well as superior reversibility.</description><subject>Cellulose acetate</subject><subject>Chemistry</subject><subject>Cycles</subject><subject>gel polymer electrolyte</subject><subject>high electrolyte uptake</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>lithium-oxygen battery</subject><subject>long-cycling stability</subject><subject>Nonaqueous electrolytes</subject><subject>Open systems</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Polymers</subject><subject>Stability</subject><subject>Storage batteries</subject><issn>1861-4728</issn><issn>1861-471X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkctKAzEUhgdRsF62rgNu3LTmMrcu2-KlUKhQBXdDmpxpUzOTmmTQ2fkIvoHv5pOYWlFx4-qck__7D-H8UXRCcI9gTM-5U7xHMaUYZ4TuRB2Sp6QbZ-R-97un-X504NwK44Tift6J3kagdaONAzQQ4LmH95fXIXcg0bVaLMNwoUF4a3T7Kd2tPX8AdAUa3YS3Ciz6BaDSWDSDSgVyZrSSm7pZiibKL1VThXn63C6gRkPuPVgFDj0FCU1MvQjiqBVa1QsUTHOllW-Por2SawfHX_Uwuru8uB1ddyfTq_FoMOkKlmDaJVLKErN5kjJgvD_PmZRxJrnkrIzTpBSyhHmexoRAngrcp2VKmOQcRMIJUM4Oo7Pt3rU1jw04X1TKiXAbXoNpXEEznGcsxkkc0NM_6Mo0tg6_C1TCaJKxDAeqt6WENc5ZKIu1VRW3bUFwscmr2ORVfOcVDP2t4UlpaP-hi8FsPPjxfgAiB6RJ</recordid><startdate>20221102</startdate><enddate>20221102</enddate><creator>Xu, Zelin</creator><creator>Guo, Dingcheng</creator><creator>Liu, Ziqiang</creator><creator>Wang, Zhiyan</creator><creator>Gu, Zhi</creator><creator>Wang, Da</creator><creator>Yao, Xiayin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2224-4247</orcidid></search><sort><creationdate>20221102</creationdate><title>Cellulose Acetate‐Based High‐Electrolyte‐Uptake Gel Polymer Electrolyte for Semi‐Solid‐State Lithium‐Oxygen Batteries with Long‐Cycling Stability</title><author>Xu, Zelin ; Guo, Dingcheng ; Liu, Ziqiang ; Wang, Zhiyan ; Gu, Zhi ; Wang, Da ; Yao, Xiayin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3502-1dddf03b563e3a9b83dd47dada3f465fcdfeb86411e86c092f613daaec5a1e2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cellulose acetate</topic><topic>Chemistry</topic><topic>Cycles</topic><topic>gel polymer electrolyte</topic><topic>high electrolyte uptake</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>lithium-oxygen battery</topic><topic>long-cycling stability</topic><topic>Nonaqueous electrolytes</topic><topic>Open systems</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Polymers</topic><topic>Stability</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zelin</creatorcontrib><creatorcontrib>Guo, Dingcheng</creatorcontrib><creatorcontrib>Liu, Ziqiang</creatorcontrib><creatorcontrib>Wang, Zhiyan</creatorcontrib><creatorcontrib>Gu, Zhi</creatorcontrib><creatorcontrib>Wang, Da</creatorcontrib><creatorcontrib>Yao, Xiayin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry, an Asian journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zelin</au><au>Guo, Dingcheng</au><au>Liu, Ziqiang</au><au>Wang, Zhiyan</au><au>Gu, Zhi</au><au>Wang, Da</au><au>Yao, Xiayin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellulose Acetate‐Based High‐Electrolyte‐Uptake Gel Polymer Electrolyte for Semi‐Solid‐State Lithium‐Oxygen Batteries with Long‐Cycling Stability</atitle><jtitle>Chemistry, an Asian journal</jtitle><date>2022-11-02</date><risdate>2022</risdate><volume>17</volume><issue>21</issue><spage>e202200712</spage><epage>n/a</epage><pages>e202200712-n/a</pages><issn>1861-4728</issn><eissn>1861-471X</eissn><abstract>Lithium‐oxygen batteries have received great research interest owing to their ultrahigh theoretical energy density and are considered as one of the promising secondary batteries. However, there are still some challenges in their practical application, like liquid organic electrolyte evaporation in the semi‐open system and instability in the high‐voltage oxidizing environment. In this work, a cellulose acetate‐based gel polymer electrolyte (CA@GPE) is proposed, whose cross‐linked microporous structure ensures the ultrahigh liquid electrolyte uptake of 2391%. The prepared CA@GPE exhibits a high lithium‐ion transference number of 0.595, a satisfying ionic conductivity of 0.47 mS cm−1 and a wide electrochemical stability window up to 5.0 V. The Li//Li symmetric cell employing CA@GPE could cycle stably over 1200 h. The lithium‐oxygen battery with CA@GPE presents a superb cycling lifetime of 370 cycles at 0.1 mA cm−2 under 0.25 mAh cm−2. This work offers a possible strategy to realize long‐cycling stability lithium‐oxygen batteries.
A semi‐solid‐state cellulose acetate‐based gel polymer electrolyte (CA@GPE) with an ultrahigh liquid electrolyte uptake of 2391% is proposed to relieve the leakage and volatility of liquid organic electrolytes in the semi‐open system of lithium‐oxygen batteries at ambient temperature. The lithium‐oxygen battery with CA@GPE exhibits excellent long‐cycling stability as well as superior reversibility.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asia.202200712</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2224-4247</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-4728 |
ispartof | Chemistry, an Asian journal, 2022-11, Vol.17 (21), p.e202200712-n/a |
issn | 1861-4728 1861-471X |
language | eng |
recordid | cdi_proquest_miscellaneous_2708734054 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | Cellulose acetate Chemistry Cycles gel polymer electrolyte high electrolyte uptake Ion currents Lithium lithium-oxygen battery long-cycling stability Nonaqueous electrolytes Open systems Oxidation Oxygen Polymers Stability Storage batteries |
title | Cellulose Acetate‐Based High‐Electrolyte‐Uptake Gel Polymer Electrolyte for Semi‐Solid‐State Lithium‐Oxygen Batteries with Long‐Cycling Stability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellulose%20Acetate%E2%80%90Based%20High%E2%80%90Electrolyte%E2%80%90Uptake%20Gel%20Polymer%20Electrolyte%20for%20Semi%E2%80%90Solid%E2%80%90State%20Lithium%E2%80%90Oxygen%20Batteries%20with%20Long%E2%80%90Cycling%20Stability&rft.jtitle=Chemistry,%20an%20Asian%20journal&rft.au=Xu,%20Zelin&rft.date=2022-11-02&rft.volume=17&rft.issue=21&rft.spage=e202200712&rft.epage=n/a&rft.pages=e202200712-n/a&rft.issn=1861-4728&rft.eissn=1861-471X&rft_id=info:doi/10.1002/asia.202200712&rft_dat=%3Cproquest_cross%3E2753257370%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3502-1dddf03b563e3a9b83dd47dada3f465fcdfeb86411e86c092f613daaec5a1e2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2753257370&rft_id=info:pmid/&rfr_iscdi=true |