Loading…

Clinical grade manufacture of 3D printed patient specific biodegradable devices for pediatric airway support

Implantable patient-specific devices are the next frontier of personalized medicine, positioned to improve the quality of care across multiple clinical disciplines. Translation of patient-specific devices requires time- and cost-effective processes to design, verify and validate in adherence to FDA...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2022-10, Vol.289, p.121702-121702, Article 121702
Main Authors: Ramaraju, Harsha, Landry, April M., Sashidharan, Subhadra, Shetty, Abhishek, Crotts, Sarah J., Maher, Kevin O., Goudy, Steven L., Hollister, Scott J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c489t-83daf1f350396f9bc10101767444bbb3e07539c0a8ba0b139d8cb45fdbdb7ae03
cites cdi_FETCH-LOGICAL-c489t-83daf1f350396f9bc10101767444bbb3e07539c0a8ba0b139d8cb45fdbdb7ae03
container_end_page 121702
container_issue
container_start_page 121702
container_title Biomaterials
container_volume 289
creator Ramaraju, Harsha
Landry, April M.
Sashidharan, Subhadra
Shetty, Abhishek
Crotts, Sarah J.
Maher, Kevin O.
Goudy, Steven L.
Hollister, Scott J.
description Implantable patient-specific devices are the next frontier of personalized medicine, positioned to improve the quality of care across multiple clinical disciplines. Translation of patient-specific devices requires time- and cost-effective processes to design, verify and validate in adherence to FDA guidance for medical device manufacture. In this study, we present a generalized strategy for selective laser sintering (SLS) of patient-specific medical devices following the prescribed guidance for additive manufacturing of medical devices issued by the FDA in 2018. We contextualize this process for manufacturing an Airway Support Device, a life-saving tracheal and bronchial implant restoring airway patency for pediatric patients diagnosed with tracheobronchomalacia and exhibiting partial or complete airway collapse. The process covers image-based modeling, design inputs, design verification, material inputs and verification, device verification, and device validation, including clinical results. We demonstrate how design and material assessment lead to verified Airway Support Devices that achieve desired airway patency and reduction in required Positive End-Expiratory Pressure (PEEP) after patient implantation. We propose this process as a template for general quality control of patient-specific, 3D printed implants. [Display omitted]
doi_str_mv 10.1016/j.biomaterials.2022.121702
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2708735657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961222003428</els_id><sourcerecordid>2708735657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-83daf1f350396f9bc10101767444bbb3e07539c0a8ba0b139d8cb45fdbdb7ae03</originalsourceid><addsrcrecordid>eNqNkMtqHDEQRUWIicePXwgiq2x6XJK6W93ehbEdGwzeJGuhRylo6JcltYP_3hrGCVlmJQTnVtU9hHxhsGXA2qv91oR51Blj0EPacuB8yziTwD-QDetkVzU9NB_JBljNq75l_JScpbSH8oeafyKnooWaiZZvyLAbwhSsHuivqB3SUU-r1zavEensqbihSwxTRkcXnQNOmaYFbfDB0nKEw0NKmwGpw5dgMVE_R7qgCzrHwugQf-tXmtZlmWO-ICe-XIyX7-85-Xl3-2N3Xz0-fX_YfXusbN31ueqE05550YDoW98bW1oDk62s69oYIxBkI3oLujMaDBO966ypG--MM1IjiHPy9Th3ifPziimrMSSLw6AnnNekuIROiqZtZEGvj6iNc0oRvSp9Rx1fFQN1sK326l_b6mBbHW2X8Of3PasZ0f2N_tFbgJsjgKXtS8Coki0SbfET0Wbl5vA_e94AmE2ZWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708735657</pqid></control><display><type>article</type><title>Clinical grade manufacture of 3D printed patient specific biodegradable devices for pediatric airway support</title><source>ScienceDirect Freedom Collection</source><creator>Ramaraju, Harsha ; Landry, April M. ; Sashidharan, Subhadra ; Shetty, Abhishek ; Crotts, Sarah J. ; Maher, Kevin O. ; Goudy, Steven L. ; Hollister, Scott J.</creator><creatorcontrib>Ramaraju, Harsha ; Landry, April M. ; Sashidharan, Subhadra ; Shetty, Abhishek ; Crotts, Sarah J. ; Maher, Kevin O. ; Goudy, Steven L. ; Hollister, Scott J.</creatorcontrib><description>Implantable patient-specific devices are the next frontier of personalized medicine, positioned to improve the quality of care across multiple clinical disciplines. Translation of patient-specific devices requires time- and cost-effective processes to design, verify and validate in adherence to FDA guidance for medical device manufacture. In this study, we present a generalized strategy for selective laser sintering (SLS) of patient-specific medical devices following the prescribed guidance for additive manufacturing of medical devices issued by the FDA in 2018. We contextualize this process for manufacturing an Airway Support Device, a life-saving tracheal and bronchial implant restoring airway patency for pediatric patients diagnosed with tracheobronchomalacia and exhibiting partial or complete airway collapse. The process covers image-based modeling, design inputs, design verification, material inputs and verification, device verification, and device validation, including clinical results. We demonstrate how design and material assessment lead to verified Airway Support Devices that achieve desired airway patency and reduction in required Positive End-Expiratory Pressure (PEEP) after patient implantation. We propose this process as a template for general quality control of patient-specific, 3D printed implants. [Display omitted]</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2022.121702</identifier><identifier>PMID: 36041362</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Additive manufacturing ; Bronchi ; Child ; Good manufacturing practice ; Humans ; Printing, Three-Dimensional ; Trachea ; Tracheal reconstruction ; Translational devices</subject><ispartof>Biomaterials, 2022-10, Vol.289, p.121702-121702, Article 121702</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-83daf1f350396f9bc10101767444bbb3e07539c0a8ba0b139d8cb45fdbdb7ae03</citedby><cites>FETCH-LOGICAL-c489t-83daf1f350396f9bc10101767444bbb3e07539c0a8ba0b139d8cb45fdbdb7ae03</cites><orcidid>0000-0001-9452-9228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36041362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramaraju, Harsha</creatorcontrib><creatorcontrib>Landry, April M.</creatorcontrib><creatorcontrib>Sashidharan, Subhadra</creatorcontrib><creatorcontrib>Shetty, Abhishek</creatorcontrib><creatorcontrib>Crotts, Sarah J.</creatorcontrib><creatorcontrib>Maher, Kevin O.</creatorcontrib><creatorcontrib>Goudy, Steven L.</creatorcontrib><creatorcontrib>Hollister, Scott J.</creatorcontrib><title>Clinical grade manufacture of 3D printed patient specific biodegradable devices for pediatric airway support</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Implantable patient-specific devices are the next frontier of personalized medicine, positioned to improve the quality of care across multiple clinical disciplines. Translation of patient-specific devices requires time- and cost-effective processes to design, verify and validate in adherence to FDA guidance for medical device manufacture. In this study, we present a generalized strategy for selective laser sintering (SLS) of patient-specific medical devices following the prescribed guidance for additive manufacturing of medical devices issued by the FDA in 2018. We contextualize this process for manufacturing an Airway Support Device, a life-saving tracheal and bronchial implant restoring airway patency for pediatric patients diagnosed with tracheobronchomalacia and exhibiting partial or complete airway collapse. The process covers image-based modeling, design inputs, design verification, material inputs and verification, device verification, and device validation, including clinical results. We demonstrate how design and material assessment lead to verified Airway Support Devices that achieve desired airway patency and reduction in required Positive End-Expiratory Pressure (PEEP) after patient implantation. We propose this process as a template for general quality control of patient-specific, 3D printed implants. [Display omitted]</description><subject>Additive manufacturing</subject><subject>Bronchi</subject><subject>Child</subject><subject>Good manufacturing practice</subject><subject>Humans</subject><subject>Printing, Three-Dimensional</subject><subject>Trachea</subject><subject>Tracheal reconstruction</subject><subject>Translational devices</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkMtqHDEQRUWIicePXwgiq2x6XJK6W93ehbEdGwzeJGuhRylo6JcltYP_3hrGCVlmJQTnVtU9hHxhsGXA2qv91oR51Blj0EPacuB8yziTwD-QDetkVzU9NB_JBljNq75l_JScpbSH8oeafyKnooWaiZZvyLAbwhSsHuivqB3SUU-r1zavEensqbihSwxTRkcXnQNOmaYFbfDB0nKEw0NKmwGpw5dgMVE_R7qgCzrHwugQf-tXmtZlmWO-ICe-XIyX7-85-Xl3-2N3Xz0-fX_YfXusbN31ueqE05550YDoW98bW1oDk62s69oYIxBkI3oLujMaDBO966ypG--MM1IjiHPy9Th3ifPziimrMSSLw6AnnNekuIROiqZtZEGvj6iNc0oRvSp9Rx1fFQN1sK326l_b6mBbHW2X8Of3PasZ0f2N_tFbgJsjgKXtS8Coki0SbfET0Wbl5vA_e94AmE2ZWg</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Ramaraju, Harsha</creator><creator>Landry, April M.</creator><creator>Sashidharan, Subhadra</creator><creator>Shetty, Abhishek</creator><creator>Crotts, Sarah J.</creator><creator>Maher, Kevin O.</creator><creator>Goudy, Steven L.</creator><creator>Hollister, Scott J.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9452-9228</orcidid></search><sort><creationdate>202210</creationdate><title>Clinical grade manufacture of 3D printed patient specific biodegradable devices for pediatric airway support</title><author>Ramaraju, Harsha ; Landry, April M. ; Sashidharan, Subhadra ; Shetty, Abhishek ; Crotts, Sarah J. ; Maher, Kevin O. ; Goudy, Steven L. ; Hollister, Scott J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-83daf1f350396f9bc10101767444bbb3e07539c0a8ba0b139d8cb45fdbdb7ae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additive manufacturing</topic><topic>Bronchi</topic><topic>Child</topic><topic>Good manufacturing practice</topic><topic>Humans</topic><topic>Printing, Three-Dimensional</topic><topic>Trachea</topic><topic>Tracheal reconstruction</topic><topic>Translational devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramaraju, Harsha</creatorcontrib><creatorcontrib>Landry, April M.</creatorcontrib><creatorcontrib>Sashidharan, Subhadra</creatorcontrib><creatorcontrib>Shetty, Abhishek</creatorcontrib><creatorcontrib>Crotts, Sarah J.</creatorcontrib><creatorcontrib>Maher, Kevin O.</creatorcontrib><creatorcontrib>Goudy, Steven L.</creatorcontrib><creatorcontrib>Hollister, Scott J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramaraju, Harsha</au><au>Landry, April M.</au><au>Sashidharan, Subhadra</au><au>Shetty, Abhishek</au><au>Crotts, Sarah J.</au><au>Maher, Kevin O.</au><au>Goudy, Steven L.</au><au>Hollister, Scott J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical grade manufacture of 3D printed patient specific biodegradable devices for pediatric airway support</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2022-10</date><risdate>2022</risdate><volume>289</volume><spage>121702</spage><epage>121702</epage><pages>121702-121702</pages><artnum>121702</artnum><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Implantable patient-specific devices are the next frontier of personalized medicine, positioned to improve the quality of care across multiple clinical disciplines. Translation of patient-specific devices requires time- and cost-effective processes to design, verify and validate in adherence to FDA guidance for medical device manufacture. In this study, we present a generalized strategy for selective laser sintering (SLS) of patient-specific medical devices following the prescribed guidance for additive manufacturing of medical devices issued by the FDA in 2018. We contextualize this process for manufacturing an Airway Support Device, a life-saving tracheal and bronchial implant restoring airway patency for pediatric patients diagnosed with tracheobronchomalacia and exhibiting partial or complete airway collapse. The process covers image-based modeling, design inputs, design verification, material inputs and verification, device verification, and device validation, including clinical results. We demonstrate how design and material assessment lead to verified Airway Support Devices that achieve desired airway patency and reduction in required Positive End-Expiratory Pressure (PEEP) after patient implantation. We propose this process as a template for general quality control of patient-specific, 3D printed implants. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>36041362</pmid><doi>10.1016/j.biomaterials.2022.121702</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9452-9228</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2022-10, Vol.289, p.121702-121702, Article 121702
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_2708735657
source ScienceDirect Freedom Collection
subjects Additive manufacturing
Bronchi
Child
Good manufacturing practice
Humans
Printing, Three-Dimensional
Trachea
Tracheal reconstruction
Translational devices
title Clinical grade manufacture of 3D printed patient specific biodegradable devices for pediatric airway support
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical%20grade%20manufacture%20of%203D%20printed%20patient%20specific%20biodegradable%20devices%20for%20pediatric%20airway%20support&rft.jtitle=Biomaterials&rft.au=Ramaraju,%20Harsha&rft.date=2022-10&rft.volume=289&rft.spage=121702&rft.epage=121702&rft.pages=121702-121702&rft.artnum=121702&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2022.121702&rft_dat=%3Cproquest_cross%3E2708735657%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-83daf1f350396f9bc10101767444bbb3e07539c0a8ba0b139d8cb45fdbdb7ae03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2708735657&rft_id=info:pmid/36041362&rfr_iscdi=true