Loading…
Clinical grade manufacture of 3D printed patient specific biodegradable devices for pediatric airway support
Implantable patient-specific devices are the next frontier of personalized medicine, positioned to improve the quality of care across multiple clinical disciplines. Translation of patient-specific devices requires time- and cost-effective processes to design, verify and validate in adherence to FDA...
Saved in:
Published in: | Biomaterials 2022-10, Vol.289, p.121702-121702, Article 121702 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c489t-83daf1f350396f9bc10101767444bbb3e07539c0a8ba0b139d8cb45fdbdb7ae03 |
---|---|
cites | cdi_FETCH-LOGICAL-c489t-83daf1f350396f9bc10101767444bbb3e07539c0a8ba0b139d8cb45fdbdb7ae03 |
container_end_page | 121702 |
container_issue | |
container_start_page | 121702 |
container_title | Biomaterials |
container_volume | 289 |
creator | Ramaraju, Harsha Landry, April M. Sashidharan, Subhadra Shetty, Abhishek Crotts, Sarah J. Maher, Kevin O. Goudy, Steven L. Hollister, Scott J. |
description | Implantable patient-specific devices are the next frontier of personalized medicine, positioned to improve the quality of care across multiple clinical disciplines. Translation of patient-specific devices requires time- and cost-effective processes to design, verify and validate in adherence to FDA guidance for medical device manufacture. In this study, we present a generalized strategy for selective laser sintering (SLS) of patient-specific medical devices following the prescribed guidance for additive manufacturing of medical devices issued by the FDA in 2018. We contextualize this process for manufacturing an Airway Support Device, a life-saving tracheal and bronchial implant restoring airway patency for pediatric patients diagnosed with tracheobronchomalacia and exhibiting partial or complete airway collapse. The process covers image-based modeling, design inputs, design verification, material inputs and verification, device verification, and device validation, including clinical results. We demonstrate how design and material assessment lead to verified Airway Support Devices that achieve desired airway patency and reduction in required Positive End-Expiratory Pressure (PEEP) after patient implantation. We propose this process as a template for general quality control of patient-specific, 3D printed implants.
[Display omitted] |
doi_str_mv | 10.1016/j.biomaterials.2022.121702 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2708735657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961222003428</els_id><sourcerecordid>2708735657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-83daf1f350396f9bc10101767444bbb3e07539c0a8ba0b139d8cb45fdbdb7ae03</originalsourceid><addsrcrecordid>eNqNkMtqHDEQRUWIicePXwgiq2x6XJK6W93ehbEdGwzeJGuhRylo6JcltYP_3hrGCVlmJQTnVtU9hHxhsGXA2qv91oR51Blj0EPacuB8yziTwD-QDetkVzU9NB_JBljNq75l_JScpbSH8oeafyKnooWaiZZvyLAbwhSsHuivqB3SUU-r1zavEensqbihSwxTRkcXnQNOmaYFbfDB0nKEw0NKmwGpw5dgMVE_R7qgCzrHwugQf-tXmtZlmWO-ICe-XIyX7-85-Xl3-2N3Xz0-fX_YfXusbN31ueqE05550YDoW98bW1oDk62s69oYIxBkI3oLujMaDBO966ypG--MM1IjiHPy9Th3ifPziimrMSSLw6AnnNekuIROiqZtZEGvj6iNc0oRvSp9Rx1fFQN1sK326l_b6mBbHW2X8Of3PasZ0f2N_tFbgJsjgKXtS8Coki0SbfET0Wbl5vA_e94AmE2ZWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708735657</pqid></control><display><type>article</type><title>Clinical grade manufacture of 3D printed patient specific biodegradable devices for pediatric airway support</title><source>ScienceDirect Freedom Collection</source><creator>Ramaraju, Harsha ; Landry, April M. ; Sashidharan, Subhadra ; Shetty, Abhishek ; Crotts, Sarah J. ; Maher, Kevin O. ; Goudy, Steven L. ; Hollister, Scott J.</creator><creatorcontrib>Ramaraju, Harsha ; Landry, April M. ; Sashidharan, Subhadra ; Shetty, Abhishek ; Crotts, Sarah J. ; Maher, Kevin O. ; Goudy, Steven L. ; Hollister, Scott J.</creatorcontrib><description>Implantable patient-specific devices are the next frontier of personalized medicine, positioned to improve the quality of care across multiple clinical disciplines. Translation of patient-specific devices requires time- and cost-effective processes to design, verify and validate in adherence to FDA guidance for medical device manufacture. In this study, we present a generalized strategy for selective laser sintering (SLS) of patient-specific medical devices following the prescribed guidance for additive manufacturing of medical devices issued by the FDA in 2018. We contextualize this process for manufacturing an Airway Support Device, a life-saving tracheal and bronchial implant restoring airway patency for pediatric patients diagnosed with tracheobronchomalacia and exhibiting partial or complete airway collapse. The process covers image-based modeling, design inputs, design verification, material inputs and verification, device verification, and device validation, including clinical results. We demonstrate how design and material assessment lead to verified Airway Support Devices that achieve desired airway patency and reduction in required Positive End-Expiratory Pressure (PEEP) after patient implantation. We propose this process as a template for general quality control of patient-specific, 3D printed implants.
[Display omitted]</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2022.121702</identifier><identifier>PMID: 36041362</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Additive manufacturing ; Bronchi ; Child ; Good manufacturing practice ; Humans ; Printing, Three-Dimensional ; Trachea ; Tracheal reconstruction ; Translational devices</subject><ispartof>Biomaterials, 2022-10, Vol.289, p.121702-121702, Article 121702</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-83daf1f350396f9bc10101767444bbb3e07539c0a8ba0b139d8cb45fdbdb7ae03</citedby><cites>FETCH-LOGICAL-c489t-83daf1f350396f9bc10101767444bbb3e07539c0a8ba0b139d8cb45fdbdb7ae03</cites><orcidid>0000-0001-9452-9228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36041362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramaraju, Harsha</creatorcontrib><creatorcontrib>Landry, April M.</creatorcontrib><creatorcontrib>Sashidharan, Subhadra</creatorcontrib><creatorcontrib>Shetty, Abhishek</creatorcontrib><creatorcontrib>Crotts, Sarah J.</creatorcontrib><creatorcontrib>Maher, Kevin O.</creatorcontrib><creatorcontrib>Goudy, Steven L.</creatorcontrib><creatorcontrib>Hollister, Scott J.</creatorcontrib><title>Clinical grade manufacture of 3D printed patient specific biodegradable devices for pediatric airway support</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Implantable patient-specific devices are the next frontier of personalized medicine, positioned to improve the quality of care across multiple clinical disciplines. Translation of patient-specific devices requires time- and cost-effective processes to design, verify and validate in adherence to FDA guidance for medical device manufacture. In this study, we present a generalized strategy for selective laser sintering (SLS) of patient-specific medical devices following the prescribed guidance for additive manufacturing of medical devices issued by the FDA in 2018. We contextualize this process for manufacturing an Airway Support Device, a life-saving tracheal and bronchial implant restoring airway patency for pediatric patients diagnosed with tracheobronchomalacia and exhibiting partial or complete airway collapse. The process covers image-based modeling, design inputs, design verification, material inputs and verification, device verification, and device validation, including clinical results. We demonstrate how design and material assessment lead to verified Airway Support Devices that achieve desired airway patency and reduction in required Positive End-Expiratory Pressure (PEEP) after patient implantation. We propose this process as a template for general quality control of patient-specific, 3D printed implants.
[Display omitted]</description><subject>Additive manufacturing</subject><subject>Bronchi</subject><subject>Child</subject><subject>Good manufacturing practice</subject><subject>Humans</subject><subject>Printing, Three-Dimensional</subject><subject>Trachea</subject><subject>Tracheal reconstruction</subject><subject>Translational devices</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkMtqHDEQRUWIicePXwgiq2x6XJK6W93ehbEdGwzeJGuhRylo6JcltYP_3hrGCVlmJQTnVtU9hHxhsGXA2qv91oR51Blj0EPacuB8yziTwD-QDetkVzU9NB_JBljNq75l_JScpbSH8oeafyKnooWaiZZvyLAbwhSsHuivqB3SUU-r1zavEensqbihSwxTRkcXnQNOmaYFbfDB0nKEw0NKmwGpw5dgMVE_R7qgCzrHwugQf-tXmtZlmWO-ICe-XIyX7-85-Xl3-2N3Xz0-fX_YfXusbN31ueqE05550YDoW98bW1oDk62s69oYIxBkI3oLujMaDBO966ypG--MM1IjiHPy9Th3ifPziimrMSSLw6AnnNekuIROiqZtZEGvj6iNc0oRvSp9Rx1fFQN1sK326l_b6mBbHW2X8Of3PasZ0f2N_tFbgJsjgKXtS8Coki0SbfET0Wbl5vA_e94AmE2ZWg</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Ramaraju, Harsha</creator><creator>Landry, April M.</creator><creator>Sashidharan, Subhadra</creator><creator>Shetty, Abhishek</creator><creator>Crotts, Sarah J.</creator><creator>Maher, Kevin O.</creator><creator>Goudy, Steven L.</creator><creator>Hollister, Scott J.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9452-9228</orcidid></search><sort><creationdate>202210</creationdate><title>Clinical grade manufacture of 3D printed patient specific biodegradable devices for pediatric airway support</title><author>Ramaraju, Harsha ; Landry, April M. ; Sashidharan, Subhadra ; Shetty, Abhishek ; Crotts, Sarah J. ; Maher, Kevin O. ; Goudy, Steven L. ; Hollister, Scott J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-83daf1f350396f9bc10101767444bbb3e07539c0a8ba0b139d8cb45fdbdb7ae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additive manufacturing</topic><topic>Bronchi</topic><topic>Child</topic><topic>Good manufacturing practice</topic><topic>Humans</topic><topic>Printing, Three-Dimensional</topic><topic>Trachea</topic><topic>Tracheal reconstruction</topic><topic>Translational devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramaraju, Harsha</creatorcontrib><creatorcontrib>Landry, April M.</creatorcontrib><creatorcontrib>Sashidharan, Subhadra</creatorcontrib><creatorcontrib>Shetty, Abhishek</creatorcontrib><creatorcontrib>Crotts, Sarah J.</creatorcontrib><creatorcontrib>Maher, Kevin O.</creatorcontrib><creatorcontrib>Goudy, Steven L.</creatorcontrib><creatorcontrib>Hollister, Scott J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramaraju, Harsha</au><au>Landry, April M.</au><au>Sashidharan, Subhadra</au><au>Shetty, Abhishek</au><au>Crotts, Sarah J.</au><au>Maher, Kevin O.</au><au>Goudy, Steven L.</au><au>Hollister, Scott J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical grade manufacture of 3D printed patient specific biodegradable devices for pediatric airway support</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2022-10</date><risdate>2022</risdate><volume>289</volume><spage>121702</spage><epage>121702</epage><pages>121702-121702</pages><artnum>121702</artnum><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Implantable patient-specific devices are the next frontier of personalized medicine, positioned to improve the quality of care across multiple clinical disciplines. Translation of patient-specific devices requires time- and cost-effective processes to design, verify and validate in adherence to FDA guidance for medical device manufacture. In this study, we present a generalized strategy for selective laser sintering (SLS) of patient-specific medical devices following the prescribed guidance for additive manufacturing of medical devices issued by the FDA in 2018. We contextualize this process for manufacturing an Airway Support Device, a life-saving tracheal and bronchial implant restoring airway patency for pediatric patients diagnosed with tracheobronchomalacia and exhibiting partial or complete airway collapse. The process covers image-based modeling, design inputs, design verification, material inputs and verification, device verification, and device validation, including clinical results. We demonstrate how design and material assessment lead to verified Airway Support Devices that achieve desired airway patency and reduction in required Positive End-Expiratory Pressure (PEEP) after patient implantation. We propose this process as a template for general quality control of patient-specific, 3D printed implants.
[Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>36041362</pmid><doi>10.1016/j.biomaterials.2022.121702</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9452-9228</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2022-10, Vol.289, p.121702-121702, Article 121702 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_2708735657 |
source | ScienceDirect Freedom Collection |
subjects | Additive manufacturing Bronchi Child Good manufacturing practice Humans Printing, Three-Dimensional Trachea Tracheal reconstruction Translational devices |
title | Clinical grade manufacture of 3D printed patient specific biodegradable devices for pediatric airway support |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical%20grade%20manufacture%20of%203D%20printed%20patient%20specific%20biodegradable%20devices%20for%20pediatric%20airway%20support&rft.jtitle=Biomaterials&rft.au=Ramaraju,%20Harsha&rft.date=2022-10&rft.volume=289&rft.spage=121702&rft.epage=121702&rft.pages=121702-121702&rft.artnum=121702&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2022.121702&rft_dat=%3Cproquest_cross%3E2708735657%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-83daf1f350396f9bc10101767444bbb3e07539c0a8ba0b139d8cb45fdbdb7ae03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2708735657&rft_id=info:pmid/36041362&rfr_iscdi=true |