Loading…

Parametric Analysis of SV Mode Shear Waves in Transversely Isotropic Materials Using Ultrasonic Rotational 3-D SWEI

Ultrasonic rotational 3-D shear wave elasticity imaging (SWEI) has been used to induce and evaluate multiple shear wave modes, including both the shear horizontal (SH) and shear vertical (SV) modes in in vivo muscle. Observations of both the SH and SV modes allow the muscle to be characterized as an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2022-11, Vol.69 (11), p.3145-3154
Main Authors: Knight, Anna E, Jin, Felix Q, Paley, Courtney Trutna, Rouze, Ned C, Moavenzadeh, Spencer R, Pietrosimone, Laura S, Palmeri, Mark L, Nightingale, Kathryn R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-bce7a8dceec5c102f5f6c2964b1ca369644ff9f6b69a09de86852e6ae89f90dc3
cites cdi_FETCH-LOGICAL-c331t-bce7a8dceec5c102f5f6c2964b1ca369644ff9f6b69a09de86852e6ae89f90dc3
container_end_page 3154
container_issue 11
container_start_page 3145
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 69
creator Knight, Anna E
Jin, Felix Q
Paley, Courtney Trutna
Rouze, Ned C
Moavenzadeh, Spencer R
Pietrosimone, Laura S
Palmeri, Mark L
Nightingale, Kathryn R
description Ultrasonic rotational 3-D shear wave elasticity imaging (SWEI) has been used to induce and evaluate multiple shear wave modes, including both the shear horizontal (SH) and shear vertical (SV) modes in in vivo muscle. Observations of both the SH and SV modes allow the muscle to be characterized as an elastic, incompressible, transversely isotropic (ITI) material with three parameters: the longitudinal shear modulus μ , the transverse shear modulus μ , and the tensile anisotropy χ . Measurement of the SV wave is necessary to characterize χ , but the factors that influence SV mode generation and characterization with ultrasonic SWEI are complicated. This work uses Green's function (GF) simulations to perform a parametric analysis to determine the optimal interrogation parameters to facilitate visualization and quantification of SV mode shear waves in muscle. We evaluate the impact of five factors: μ , μ , χ , fiber tilt angle [Formula: see text], and F-number of the push geometry on SV mode speed, amplitude, and rotational distribution. These analyses demonstrate that the following hold: 1) as μ increases, SV waves decrease in amplitude so are more difficult to measure in SWEI imaging; 2) as μ increases, the SV wave speeds increase; 3) as χ increases, the SV waves increase in speed and separate from the SH waves; 4) as fiber tilt angle [Formula: see text] increases, the measurable SV waves remain approximately the same speed, but change in strength and in rotational distribution; and 5) as the push beam geometry changes with F-number, the measurable SV waves remain approximately the same speed, but change in strength and rotational distribution. While specific SV mode speeds depend on the combinations of all parameters considered, measurable SV waves can be generated and characterized across the range of parameters considered. To maximize measurable SV waves separate from the SH waves, it is recommended to use an F/1 push geometry and [Formula: see text].
doi_str_mv 10.1109/TUFFC.2022.3203935
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2709736317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731242195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-bce7a8dceec5c102f5f6c2964b1ca369644ff9f6b69a09de86852e6ae89f90dc3</originalsourceid><addsrcrecordid>eNpdkU1PGzEQhi0EgpTyB3qoLHHhssEfa2d9jAKhkYhATQLHleMdt4s26-DZRMq_x2lSDpxmpHneVyM9hPzgrM85M7fzxXg86gsmRF8KJo1UJ6THlVBZYZQ6JT1WFCqTjLML8g3xjTGe50ackwupmcqlET2CzzbaFXSxdnTY2maHNdLg6eyFTkMFdPYXbKSvdgtI65bOo21xCxGh2dEJhi6GdUpObQextg3SBdbtH7poumgxtOn0O3S2q0OqpjK7o7PX-8l3cuYTC1fHeUkW4_v56Ff2-PQwGQ0fMycl77Klg4EtKgfglONMeOW1E0bnS-6s1GnJvTdeL7WxzFRQ6EIJ0BYK4w2rnLwkN4fedQzvG8CuXNXooGlsC2GDpRgwM5Ba8kFCr7-gb2ET09N7SnKRC25UosSBcjEgRvDlOtYrG3clZ-VeSflPSblXUh6VpNDPY_VmuYLqM_LfgfwA6saHVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731242195</pqid></control><display><type>article</type><title>Parametric Analysis of SV Mode Shear Waves in Transversely Isotropic Materials Using Ultrasonic Rotational 3-D SWEI</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Knight, Anna E ; Jin, Felix Q ; Paley, Courtney Trutna ; Rouze, Ned C ; Moavenzadeh, Spencer R ; Pietrosimone, Laura S ; Palmeri, Mark L ; Nightingale, Kathryn R</creator><creatorcontrib>Knight, Anna E ; Jin, Felix Q ; Paley, Courtney Trutna ; Rouze, Ned C ; Moavenzadeh, Spencer R ; Pietrosimone, Laura S ; Palmeri, Mark L ; Nightingale, Kathryn R</creatorcontrib><description>Ultrasonic rotational 3-D shear wave elasticity imaging (SWEI) has been used to induce and evaluate multiple shear wave modes, including both the shear horizontal (SH) and shear vertical (SV) modes in in vivo muscle. Observations of both the SH and SV modes allow the muscle to be characterized as an elastic, incompressible, transversely isotropic (ITI) material with three parameters: the longitudinal shear modulus μ , the transverse shear modulus μ , and the tensile anisotropy χ . Measurement of the SV wave is necessary to characterize χ , but the factors that influence SV mode generation and characterization with ultrasonic SWEI are complicated. This work uses Green's function (GF) simulations to perform a parametric analysis to determine the optimal interrogation parameters to facilitate visualization and quantification of SV mode shear waves in muscle. We evaluate the impact of five factors: μ , μ , χ , fiber tilt angle [Formula: see text], and F-number of the push geometry on SV mode speed, amplitude, and rotational distribution. These analyses demonstrate that the following hold: 1) as μ increases, SV waves decrease in amplitude so are more difficult to measure in SWEI imaging; 2) as μ increases, the SV wave speeds increase; 3) as χ increases, the SV waves increase in speed and separate from the SH waves; 4) as fiber tilt angle [Formula: see text] increases, the measurable SV waves remain approximately the same speed, but change in strength and in rotational distribution; and 5) as the push beam geometry changes with F-number, the measurable SV waves remain approximately the same speed, but change in strength and rotational distribution. While specific SV mode speeds depend on the combinations of all parameters considered, measurable SV waves can be generated and characterized across the range of parameters considered. To maximize measurable SV waves separate from the SH waves, it is recommended to use an F/1 push geometry and [Formula: see text].</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2022.3203935</identifier><identifier>PMID: 36054392</identifier><language>eng</language><publisher>United States: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Amplitudes ; Anisotropy ; Elasticity ; Elasticity Imaging Techniques - methods ; Evaluation ; Geometry ; Green's functions ; Interrogation ; Isotropic material ; Muscles ; Parameters ; Parametric analysis ; Parametric statistics ; SH waves ; Shear modulus ; Transverse shear ; Ultrasonics ; Ultrasonography</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2022-11, Vol.69 (11), p.3145-3154</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-bce7a8dceec5c102f5f6c2964b1ca369644ff9f6b69a09de86852e6ae89f90dc3</citedby><cites>FETCH-LOGICAL-c331t-bce7a8dceec5c102f5f6c2964b1ca369644ff9f6b69a09de86852e6ae89f90dc3</cites><orcidid>0000-0003-0960-4495 ; 0000-0003-0491-0821 ; 0000-0003-2154-2434 ; 0000-0003-0533-618X ; 0000-0002-0565-6354 ; 0000-0002-2632-413X ; 0000-0001-8995-0050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36054392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Knight, Anna E</creatorcontrib><creatorcontrib>Jin, Felix Q</creatorcontrib><creatorcontrib>Paley, Courtney Trutna</creatorcontrib><creatorcontrib>Rouze, Ned C</creatorcontrib><creatorcontrib>Moavenzadeh, Spencer R</creatorcontrib><creatorcontrib>Pietrosimone, Laura S</creatorcontrib><creatorcontrib>Palmeri, Mark L</creatorcontrib><creatorcontrib>Nightingale, Kathryn R</creatorcontrib><title>Parametric Analysis of SV Mode Shear Waves in Transversely Isotropic Materials Using Ultrasonic Rotational 3-D SWEI</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Ultrasonic rotational 3-D shear wave elasticity imaging (SWEI) has been used to induce and evaluate multiple shear wave modes, including both the shear horizontal (SH) and shear vertical (SV) modes in in vivo muscle. Observations of both the SH and SV modes allow the muscle to be characterized as an elastic, incompressible, transversely isotropic (ITI) material with three parameters: the longitudinal shear modulus μ , the transverse shear modulus μ , and the tensile anisotropy χ . Measurement of the SV wave is necessary to characterize χ , but the factors that influence SV mode generation and characterization with ultrasonic SWEI are complicated. This work uses Green's function (GF) simulations to perform a parametric analysis to determine the optimal interrogation parameters to facilitate visualization and quantification of SV mode shear waves in muscle. We evaluate the impact of five factors: μ , μ , χ , fiber tilt angle [Formula: see text], and F-number of the push geometry on SV mode speed, amplitude, and rotational distribution. These analyses demonstrate that the following hold: 1) as μ increases, SV waves decrease in amplitude so are more difficult to measure in SWEI imaging; 2) as μ increases, the SV wave speeds increase; 3) as χ increases, the SV waves increase in speed and separate from the SH waves; 4) as fiber tilt angle [Formula: see text] increases, the measurable SV waves remain approximately the same speed, but change in strength and in rotational distribution; and 5) as the push beam geometry changes with F-number, the measurable SV waves remain approximately the same speed, but change in strength and rotational distribution. While specific SV mode speeds depend on the combinations of all parameters considered, measurable SV waves can be generated and characterized across the range of parameters considered. To maximize measurable SV waves separate from the SH waves, it is recommended to use an F/1 push geometry and [Formula: see text].</description><subject>Amplitudes</subject><subject>Anisotropy</subject><subject>Elasticity</subject><subject>Elasticity Imaging Techniques - methods</subject><subject>Evaluation</subject><subject>Geometry</subject><subject>Green's functions</subject><subject>Interrogation</subject><subject>Isotropic material</subject><subject>Muscles</subject><subject>Parameters</subject><subject>Parametric analysis</subject><subject>Parametric statistics</subject><subject>SH waves</subject><subject>Shear modulus</subject><subject>Transverse shear</subject><subject>Ultrasonics</subject><subject>Ultrasonography</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkU1PGzEQhi0EgpTyB3qoLHHhssEfa2d9jAKhkYhATQLHleMdt4s26-DZRMq_x2lSDpxmpHneVyM9hPzgrM85M7fzxXg86gsmRF8KJo1UJ6THlVBZYZQ6JT1WFCqTjLML8g3xjTGe50ackwupmcqlET2CzzbaFXSxdnTY2maHNdLg6eyFTkMFdPYXbKSvdgtI65bOo21xCxGh2dEJhi6GdUpObQextg3SBdbtH7poumgxtOn0O3S2q0OqpjK7o7PX-8l3cuYTC1fHeUkW4_v56Ff2-PQwGQ0fMycl77Klg4EtKgfglONMeOW1E0bnS-6s1GnJvTdeL7WxzFRQ6EIJ0BYK4w2rnLwkN4fedQzvG8CuXNXooGlsC2GDpRgwM5Ba8kFCr7-gb2ET09N7SnKRC25UosSBcjEgRvDlOtYrG3clZ-VeSflPSblXUh6VpNDPY_VmuYLqM_LfgfwA6saHVw</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Knight, Anna E</creator><creator>Jin, Felix Q</creator><creator>Paley, Courtney Trutna</creator><creator>Rouze, Ned C</creator><creator>Moavenzadeh, Spencer R</creator><creator>Pietrosimone, Laura S</creator><creator>Palmeri, Mark L</creator><creator>Nightingale, Kathryn R</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0960-4495</orcidid><orcidid>https://orcid.org/0000-0003-0491-0821</orcidid><orcidid>https://orcid.org/0000-0003-2154-2434</orcidid><orcidid>https://orcid.org/0000-0003-0533-618X</orcidid><orcidid>https://orcid.org/0000-0002-0565-6354</orcidid><orcidid>https://orcid.org/0000-0002-2632-413X</orcidid><orcidid>https://orcid.org/0000-0001-8995-0050</orcidid></search><sort><creationdate>20221101</creationdate><title>Parametric Analysis of SV Mode Shear Waves in Transversely Isotropic Materials Using Ultrasonic Rotational 3-D SWEI</title><author>Knight, Anna E ; Jin, Felix Q ; Paley, Courtney Trutna ; Rouze, Ned C ; Moavenzadeh, Spencer R ; Pietrosimone, Laura S ; Palmeri, Mark L ; Nightingale, Kathryn R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-bce7a8dceec5c102f5f6c2964b1ca369644ff9f6b69a09de86852e6ae89f90dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplitudes</topic><topic>Anisotropy</topic><topic>Elasticity</topic><topic>Elasticity Imaging Techniques - methods</topic><topic>Evaluation</topic><topic>Geometry</topic><topic>Green's functions</topic><topic>Interrogation</topic><topic>Isotropic material</topic><topic>Muscles</topic><topic>Parameters</topic><topic>Parametric analysis</topic><topic>Parametric statistics</topic><topic>SH waves</topic><topic>Shear modulus</topic><topic>Transverse shear</topic><topic>Ultrasonics</topic><topic>Ultrasonography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knight, Anna E</creatorcontrib><creatorcontrib>Jin, Felix Q</creatorcontrib><creatorcontrib>Paley, Courtney Trutna</creatorcontrib><creatorcontrib>Rouze, Ned C</creatorcontrib><creatorcontrib>Moavenzadeh, Spencer R</creatorcontrib><creatorcontrib>Pietrosimone, Laura S</creatorcontrib><creatorcontrib>Palmeri, Mark L</creatorcontrib><creatorcontrib>Nightingale, Kathryn R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knight, Anna E</au><au>Jin, Felix Q</au><au>Paley, Courtney Trutna</au><au>Rouze, Ned C</au><au>Moavenzadeh, Spencer R</au><au>Pietrosimone, Laura S</au><au>Palmeri, Mark L</au><au>Nightingale, Kathryn R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric Analysis of SV Mode Shear Waves in Transversely Isotropic Materials Using Ultrasonic Rotational 3-D SWEI</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>69</volume><issue>11</issue><spage>3145</spage><epage>3154</epage><pages>3145-3154</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><abstract>Ultrasonic rotational 3-D shear wave elasticity imaging (SWEI) has been used to induce and evaluate multiple shear wave modes, including both the shear horizontal (SH) and shear vertical (SV) modes in in vivo muscle. Observations of both the SH and SV modes allow the muscle to be characterized as an elastic, incompressible, transversely isotropic (ITI) material with three parameters: the longitudinal shear modulus μ , the transverse shear modulus μ , and the tensile anisotropy χ . Measurement of the SV wave is necessary to characterize χ , but the factors that influence SV mode generation and characterization with ultrasonic SWEI are complicated. This work uses Green's function (GF) simulations to perform a parametric analysis to determine the optimal interrogation parameters to facilitate visualization and quantification of SV mode shear waves in muscle. We evaluate the impact of five factors: μ , μ , χ , fiber tilt angle [Formula: see text], and F-number of the push geometry on SV mode speed, amplitude, and rotational distribution. These analyses demonstrate that the following hold: 1) as μ increases, SV waves decrease in amplitude so are more difficult to measure in SWEI imaging; 2) as μ increases, the SV wave speeds increase; 3) as χ increases, the SV waves increase in speed and separate from the SH waves; 4) as fiber tilt angle [Formula: see text] increases, the measurable SV waves remain approximately the same speed, but change in strength and in rotational distribution; and 5) as the push beam geometry changes with F-number, the measurable SV waves remain approximately the same speed, but change in strength and rotational distribution. While specific SV mode speeds depend on the combinations of all parameters considered, measurable SV waves can be generated and characterized across the range of parameters considered. To maximize measurable SV waves separate from the SH waves, it is recommended to use an F/1 push geometry and [Formula: see text].</abstract><cop>United States</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><pmid>36054392</pmid><doi>10.1109/TUFFC.2022.3203935</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0960-4495</orcidid><orcidid>https://orcid.org/0000-0003-0491-0821</orcidid><orcidid>https://orcid.org/0000-0003-2154-2434</orcidid><orcidid>https://orcid.org/0000-0003-0533-618X</orcidid><orcidid>https://orcid.org/0000-0002-0565-6354</orcidid><orcidid>https://orcid.org/0000-0002-2632-413X</orcidid><orcidid>https://orcid.org/0000-0001-8995-0050</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2022-11, Vol.69 (11), p.3145-3154
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_2709736317
source IEEE Electronic Library (IEL) Journals
subjects Amplitudes
Anisotropy
Elasticity
Elasticity Imaging Techniques - methods
Evaluation
Geometry
Green's functions
Interrogation
Isotropic material
Muscles
Parameters
Parametric analysis
Parametric statistics
SH waves
Shear modulus
Transverse shear
Ultrasonics
Ultrasonography
title Parametric Analysis of SV Mode Shear Waves in Transversely Isotropic Materials Using Ultrasonic Rotational 3-D SWEI
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20Analysis%20of%20SV%20Mode%20Shear%20Waves%20in%20Transversely%20Isotropic%20Materials%20Using%20Ultrasonic%20Rotational%203-D%20SWEI&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Knight,%20Anna%20E&rft.date=2022-11-01&rft.volume=69&rft.issue=11&rft.spage=3145&rft.epage=3154&rft.pages=3145-3154&rft.issn=0885-3010&rft.eissn=1525-8955&rft_id=info:doi/10.1109/TUFFC.2022.3203935&rft_dat=%3Cproquest_cross%3E2731242195%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-bce7a8dceec5c102f5f6c2964b1ca369644ff9f6b69a09de86852e6ae89f90dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2731242195&rft_id=info:pmid/36054392&rfr_iscdi=true