Loading…

Acceleration of imaging in atomic force microscopy working in sub-resonance tapping mode

Sub-resonance tapping (SRT) mode of atomic force microscopy (AFM) enables researchers to image surfaces with well-controlled load forces and to collect maps of multiple physical properties of samples. The major bottleneck of this mode is a relatively low scan speed compared to other scanning modes....

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 2022-08, Vol.93 (8), p.083706
Main Authors: Echols-Jones, Piers, Messner, William, Sokolov, Igor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sub-resonance tapping (SRT) mode of atomic force microscopy (AFM) enables researchers to image surfaces with well-controlled load forces and to collect maps of multiple physical properties of samples. The major bottleneck of this mode is a relatively low scan speed compared to other scanning modes. This paper presents a novel control algorithm that substantially improves the scanning speed over the standard SRT. We propose naming the new modality Trajectory Tracking SRT (TT-SRT). In contrast with the standard SRT control, TT-SRT uses the feedback within every single touch of the sample by the AFM probe. To demonstrate the advantage of TT-SRT, we conduct scans on a variety of samples with differing topologies, roughnesses, and mechanical properties. Each sample region is scanned with both standard SRT and TT-SRT at the same set of speeds. The control gains are tuned before each scan for maximum performance in each mode. Performance is evaluated by selecting a given level of image quality and finding the maximum speed that can be achieved by each algorithm. We find that with increased demand for data quality, the utility of TT-SRT becomes more apparent; for example, the speed of TT-SRT can be ten times faster or more than standard SRT for a reasonable expectation of data quality.
ISSN:0034-6748
1089-7623
1089-7623
DOI:10.1063/5.0089806