Loading…
Design of adaptive Takagi–Sugeno–Kang fuzzy models
The paper describes a method of fuzzy model generation using numerical data as a starting point. The algorithm generates a Takagi-Sugeno-Kang fuzzy model, characterised with transparency, high accuracy and small number of rules. The training algorithm consists of three steps: partitioning of the inp...
Saved in:
Published in: | Applied soft computing 2002-12, Vol.2 (2), p.89-103 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper describes a method of fuzzy model generation using numerical data as a starting point. The algorithm generates a Takagi-Sugeno-Kang fuzzy model, characterised with transparency, high accuracy and small number of rules. The training algorithm consists of three steps: partitioning of the input-output space using a fuzzy clustering method; determination of parameters of the consequent part of a rule from over-determined batch least-squares (LS) formulation of the problem, using singular value decomposition algorithm; and adaptation of these parameters using recursive least-squares method. Three illustrative well-known benchmark modelling problems serve the purpose of demonstrating the performance of the generated models. The achievable performance is compared with similar existing models, available in literature. |
---|---|
ISSN: | 1568-4946 |
DOI: | 10.1016/S1568-4946(02)00032-7 |