Loading…
Non-photoperiodic transition of female cannabis seedlings from juvenile to adult reproductive stage
Key message Vegetative-to-reproductive phase transition in female cannabis seedlings occurs autonomously with the de novo development of single flowers. To ensure successful sexual reproduction, many plant species originating from seedlings undergo juvenile-to-adult transition. This phase transition...
Saved in:
Published in: | Plant reproduction 2022-12, Vol.35 (4), p.265-277 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c378t-167ec490924cd43cb873c38652e083dac05dbcd2a7aa3c7488fd9e0bb33a6d973 |
---|---|
cites | cdi_FETCH-LOGICAL-c378t-167ec490924cd43cb873c38652e083dac05dbcd2a7aa3c7488fd9e0bb33a6d973 |
container_end_page | 277 |
container_issue | 4 |
container_start_page | 265 |
container_title | Plant reproduction |
container_volume | 35 |
creator | Spitzer-Rimon, Ben Shafran-Tomer, Hadas Gottlieb, Gilad H. Doron-Faigenboim, Adi Zemach, Hanita Kamenetsky-Goldstein, Rina Flaishman, Moshe |
description | Key message
Vegetative-to-reproductive phase transition in female cannabis seedlings occurs autonomously with the de novo development of single flowers.
To ensure successful sexual reproduction, many plant species originating from seedlings undergo juvenile-to-adult transition. This phase transition precedes and enables the vegetative-to-reproductive shift in plants, upon perception of internal and/or external signals such as temperature, photoperiod, metabolite levels, and phytohormones. This study demonstrates that the juvenile seedlings of cannabis gradually shift to the adult vegetative stage, as confirmed by the formation of lobed leaves, and upregulation of the phase-transition genes. In the tested cultivar, the switch to the reproductive stage occurs with the development of a pair of single flowers in the 7th node. Histological analysis indicated that transition to the reproductive stage is accomplished by the
de novo
establishment of new flower meristems which are not present in a vegetative stage, or as dormant meristems at nodes 4 and 6. Moreover, there were dramatic changes in the transcriptomic profile of flowering-related genes among nodes 4, 6, and 7. Downregulation of flowering repressors and an intense increase in the transcription of phase transition-related genes occur in parallel with an increase in the transcription of flowering integrators and meristem identity genes. These results support and provide molecular evidence for previous findings that cannabis possesses an autonomous flowering mechanism and the transition to reproductive phase is controlled in this plant mainly by internal signals. |
doi_str_mv | 10.1007/s00497-022-00449-0 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2709914862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A728224868</galeid><sourcerecordid>A728224868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-167ec490924cd43cb873c38652e083dac05dbcd2a7aa3c7488fd9e0bb33a6d973</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSNERau2L8ACWWJDFykT24njZVVRqFSBxM_acuxJ8FViX2ynom9fQ0pRWSAvPNJ8Z3RmTlW9bOC8ARBvEwCXogZK61JxWcOz6og2ktdCds3zx7plh9VpSjsAaIA1LfAX1SHroGOUiqPKfAy-3n8POewxumCdITlqn1x2wZMwkhEXPSMx2ns9uEQSop2dnxIZY1jIbr1F7wqQA9F2nTOJuI_Bria7WyQp6wlPqoNRzwlPH_7j6tvVu6-XH-qbT--vLy9uasNEn-umE2i4BEm5sZyZoRfMsL5rKULPrDbQ2sFYqoXWzAje96OVCMPAmO6sFOy4erPNLQZ-rJiyWlwyOM_aY1iTogKkbHjf0YK-_gfdhTX64q5QHARnvJWFOt-oqZxAOT-GchtTnsXFmeBxLJurC0F7SsvYvgjOnggKk_FnnvSakrr-8vkpSzfWxJBSxFHto1t0vFMNqF8Rqy1iVSJWvyNWUESvHnyvw4L2UfIn0AKwDUil5SeMfxf7z9h7vuGwzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2740743459</pqid></control><display><type>article</type><title>Non-photoperiodic transition of female cannabis seedlings from juvenile to adult reproductive stage</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Spitzer-Rimon, Ben ; Shafran-Tomer, Hadas ; Gottlieb, Gilad H. ; Doron-Faigenboim, Adi ; Zemach, Hanita ; Kamenetsky-Goldstein, Rina ; Flaishman, Moshe</creator><creatorcontrib>Spitzer-Rimon, Ben ; Shafran-Tomer, Hadas ; Gottlieb, Gilad H. ; Doron-Faigenboim, Adi ; Zemach, Hanita ; Kamenetsky-Goldstein, Rina ; Flaishman, Moshe</creatorcontrib><description>Key message
Vegetative-to-reproductive phase transition in female cannabis seedlings occurs autonomously with the de novo development of single flowers.
To ensure successful sexual reproduction, many plant species originating from seedlings undergo juvenile-to-adult transition. This phase transition precedes and enables the vegetative-to-reproductive shift in plants, upon perception of internal and/or external signals such as temperature, photoperiod, metabolite levels, and phytohormones. This study demonstrates that the juvenile seedlings of cannabis gradually shift to the adult vegetative stage, as confirmed by the formation of lobed leaves, and upregulation of the phase-transition genes. In the tested cultivar, the switch to the reproductive stage occurs with the development of a pair of single flowers in the 7th node. Histological analysis indicated that transition to the reproductive stage is accomplished by the
de novo
establishment of new flower meristems which are not present in a vegetative stage, or as dormant meristems at nodes 4 and 6. Moreover, there were dramatic changes in the transcriptomic profile of flowering-related genes among nodes 4, 6, and 7. Downregulation of flowering repressors and an intense increase in the transcription of phase transition-related genes occur in parallel with an increase in the transcription of flowering integrators and meristem identity genes. These results support and provide molecular evidence for previous findings that cannabis possesses an autonomous flowering mechanism and the transition to reproductive phase is controlled in this plant mainly by internal signals.</description><identifier>ISSN: 2194-7953</identifier><identifier>EISSN: 2194-7961</identifier><identifier>DOI: 10.1007/s00497-022-00449-0</identifier><identifier>PMID: 36063227</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Analysis ; Biomedical and Life Sciences ; Cannabis ; Cannabis - genetics ; Cell Biology ; Cultivars ; Developmental stages ; Females ; Flowering ; Flowers ; Gene Expression Regulation, Plant ; Genes ; Genetic aspects ; Genetic transcription ; Gibberellins ; Life Sciences ; Marijuana ; Meristem - genetics ; Meristems ; Metabolites ; Nodes ; Original Article ; Phase transitions ; Photoperiod ; Plant hormones ; Plant Sciences ; Plant species ; Plants ; Plants (botany) ; Repressors ; Reproduction (biology) ; Reproduction - genetics ; Seedlings ; Seedlings - genetics ; Sexual reproduction ; Temperature perception ; Transcriptomics</subject><ispartof>Plant reproduction, 2022-12, Vol.35 (4), p.265-277</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-167ec490924cd43cb873c38652e083dac05dbcd2a7aa3c7488fd9e0bb33a6d973</citedby><cites>FETCH-LOGICAL-c378t-167ec490924cd43cb873c38652e083dac05dbcd2a7aa3c7488fd9e0bb33a6d973</cites><orcidid>0000-0002-7219-6677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36063227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spitzer-Rimon, Ben</creatorcontrib><creatorcontrib>Shafran-Tomer, Hadas</creatorcontrib><creatorcontrib>Gottlieb, Gilad H.</creatorcontrib><creatorcontrib>Doron-Faigenboim, Adi</creatorcontrib><creatorcontrib>Zemach, Hanita</creatorcontrib><creatorcontrib>Kamenetsky-Goldstein, Rina</creatorcontrib><creatorcontrib>Flaishman, Moshe</creatorcontrib><title>Non-photoperiodic transition of female cannabis seedlings from juvenile to adult reproductive stage</title><title>Plant reproduction</title><addtitle>Plant Reprod</addtitle><addtitle>Plant Reprod</addtitle><description>Key message
Vegetative-to-reproductive phase transition in female cannabis seedlings occurs autonomously with the de novo development of single flowers.
To ensure successful sexual reproduction, many plant species originating from seedlings undergo juvenile-to-adult transition. This phase transition precedes and enables the vegetative-to-reproductive shift in plants, upon perception of internal and/or external signals such as temperature, photoperiod, metabolite levels, and phytohormones. This study demonstrates that the juvenile seedlings of cannabis gradually shift to the adult vegetative stage, as confirmed by the formation of lobed leaves, and upregulation of the phase-transition genes. In the tested cultivar, the switch to the reproductive stage occurs with the development of a pair of single flowers in the 7th node. Histological analysis indicated that transition to the reproductive stage is accomplished by the
de novo
establishment of new flower meristems which are not present in a vegetative stage, or as dormant meristems at nodes 4 and 6. Moreover, there were dramatic changes in the transcriptomic profile of flowering-related genes among nodes 4, 6, and 7. Downregulation of flowering repressors and an intense increase in the transcription of phase transition-related genes occur in parallel with an increase in the transcription of flowering integrators and meristem identity genes. These results support and provide molecular evidence for previous findings that cannabis possesses an autonomous flowering mechanism and the transition to reproductive phase is controlled in this plant mainly by internal signals.</description><subject>Agriculture</subject><subject>Analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Cannabis</subject><subject>Cannabis - genetics</subject><subject>Cell Biology</subject><subject>Cultivars</subject><subject>Developmental stages</subject><subject>Females</subject><subject>Flowering</subject><subject>Flowers</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic transcription</subject><subject>Gibberellins</subject><subject>Life Sciences</subject><subject>Marijuana</subject><subject>Meristem - genetics</subject><subject>Meristems</subject><subject>Metabolites</subject><subject>Nodes</subject><subject>Original Article</subject><subject>Phase transitions</subject><subject>Photoperiod</subject><subject>Plant hormones</subject><subject>Plant Sciences</subject><subject>Plant species</subject><subject>Plants</subject><subject>Plants (botany)</subject><subject>Repressors</subject><subject>Reproduction (biology)</subject><subject>Reproduction - genetics</subject><subject>Seedlings</subject><subject>Seedlings - genetics</subject><subject>Sexual reproduction</subject><subject>Temperature perception</subject><subject>Transcriptomics</subject><issn>2194-7953</issn><issn>2194-7961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhSNERau2L8ACWWJDFykT24njZVVRqFSBxM_acuxJ8FViX2ynom9fQ0pRWSAvPNJ8Z3RmTlW9bOC8ARBvEwCXogZK61JxWcOz6og2ktdCds3zx7plh9VpSjsAaIA1LfAX1SHroGOUiqPKfAy-3n8POewxumCdITlqn1x2wZMwkhEXPSMx2ns9uEQSop2dnxIZY1jIbr1F7wqQA9F2nTOJuI_Bria7WyQp6wlPqoNRzwlPH_7j6tvVu6-XH-qbT--vLy9uasNEn-umE2i4BEm5sZyZoRfMsL5rKULPrDbQ2sFYqoXWzAje96OVCMPAmO6sFOy4erPNLQZ-rJiyWlwyOM_aY1iTogKkbHjf0YK-_gfdhTX64q5QHARnvJWFOt-oqZxAOT-GchtTnsXFmeBxLJurC0F7SsvYvgjOnggKk_FnnvSakrr-8vkpSzfWxJBSxFHto1t0vFMNqF8Rqy1iVSJWvyNWUESvHnyvw4L2UfIn0AKwDUil5SeMfxf7z9h7vuGwzw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Spitzer-Rimon, Ben</creator><creator>Shafran-Tomer, Hadas</creator><creator>Gottlieb, Gilad H.</creator><creator>Doron-Faigenboim, Adi</creator><creator>Zemach, Hanita</creator><creator>Kamenetsky-Goldstein, Rina</creator><creator>Flaishman, Moshe</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7219-6677</orcidid></search><sort><creationdate>20221201</creationdate><title>Non-photoperiodic transition of female cannabis seedlings from juvenile to adult reproductive stage</title><author>Spitzer-Rimon, Ben ; Shafran-Tomer, Hadas ; Gottlieb, Gilad H. ; Doron-Faigenboim, Adi ; Zemach, Hanita ; Kamenetsky-Goldstein, Rina ; Flaishman, Moshe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-167ec490924cd43cb873c38652e083dac05dbcd2a7aa3c7488fd9e0bb33a6d973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Cannabis</topic><topic>Cannabis - genetics</topic><topic>Cell Biology</topic><topic>Cultivars</topic><topic>Developmental stages</topic><topic>Females</topic><topic>Flowering</topic><topic>Flowers</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic transcription</topic><topic>Gibberellins</topic><topic>Life Sciences</topic><topic>Marijuana</topic><topic>Meristem - genetics</topic><topic>Meristems</topic><topic>Metabolites</topic><topic>Nodes</topic><topic>Original Article</topic><topic>Phase transitions</topic><topic>Photoperiod</topic><topic>Plant hormones</topic><topic>Plant Sciences</topic><topic>Plant species</topic><topic>Plants</topic><topic>Plants (botany)</topic><topic>Repressors</topic><topic>Reproduction (biology)</topic><topic>Reproduction - genetics</topic><topic>Seedlings</topic><topic>Seedlings - genetics</topic><topic>Sexual reproduction</topic><topic>Temperature perception</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spitzer-Rimon, Ben</creatorcontrib><creatorcontrib>Shafran-Tomer, Hadas</creatorcontrib><creatorcontrib>Gottlieb, Gilad H.</creatorcontrib><creatorcontrib>Doron-Faigenboim, Adi</creatorcontrib><creatorcontrib>Zemach, Hanita</creatorcontrib><creatorcontrib>Kamenetsky-Goldstein, Rina</creatorcontrib><creatorcontrib>Flaishman, Moshe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Plant reproduction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spitzer-Rimon, Ben</au><au>Shafran-Tomer, Hadas</au><au>Gottlieb, Gilad H.</au><au>Doron-Faigenboim, Adi</au><au>Zemach, Hanita</au><au>Kamenetsky-Goldstein, Rina</au><au>Flaishman, Moshe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-photoperiodic transition of female cannabis seedlings from juvenile to adult reproductive stage</atitle><jtitle>Plant reproduction</jtitle><stitle>Plant Reprod</stitle><addtitle>Plant Reprod</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>35</volume><issue>4</issue><spage>265</spage><epage>277</epage><pages>265-277</pages><issn>2194-7953</issn><eissn>2194-7961</eissn><abstract>Key message
Vegetative-to-reproductive phase transition in female cannabis seedlings occurs autonomously with the de novo development of single flowers.
To ensure successful sexual reproduction, many plant species originating from seedlings undergo juvenile-to-adult transition. This phase transition precedes and enables the vegetative-to-reproductive shift in plants, upon perception of internal and/or external signals such as temperature, photoperiod, metabolite levels, and phytohormones. This study demonstrates that the juvenile seedlings of cannabis gradually shift to the adult vegetative stage, as confirmed by the formation of lobed leaves, and upregulation of the phase-transition genes. In the tested cultivar, the switch to the reproductive stage occurs with the development of a pair of single flowers in the 7th node. Histological analysis indicated that transition to the reproductive stage is accomplished by the
de novo
establishment of new flower meristems which are not present in a vegetative stage, or as dormant meristems at nodes 4 and 6. Moreover, there were dramatic changes in the transcriptomic profile of flowering-related genes among nodes 4, 6, and 7. Downregulation of flowering repressors and an intense increase in the transcription of phase transition-related genes occur in parallel with an increase in the transcription of flowering integrators and meristem identity genes. These results support and provide molecular evidence for previous findings that cannabis possesses an autonomous flowering mechanism and the transition to reproductive phase is controlled in this plant mainly by internal signals.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36063227</pmid><doi>10.1007/s00497-022-00449-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7219-6677</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-7953 |
ispartof | Plant reproduction, 2022-12, Vol.35 (4), p.265-277 |
issn | 2194-7953 2194-7961 |
language | eng |
recordid | cdi_proquest_miscellaneous_2709914862 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Agriculture Analysis Biomedical and Life Sciences Cannabis Cannabis - genetics Cell Biology Cultivars Developmental stages Females Flowering Flowers Gene Expression Regulation, Plant Genes Genetic aspects Genetic transcription Gibberellins Life Sciences Marijuana Meristem - genetics Meristems Metabolites Nodes Original Article Phase transitions Photoperiod Plant hormones Plant Sciences Plant species Plants Plants (botany) Repressors Reproduction (biology) Reproduction - genetics Seedlings Seedlings - genetics Sexual reproduction Temperature perception Transcriptomics |
title | Non-photoperiodic transition of female cannabis seedlings from juvenile to adult reproductive stage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-photoperiodic%20transition%20of%20female%20cannabis%20seedlings%20from%20juvenile%20to%20adult%20reproductive%20stage&rft.jtitle=Plant%20reproduction&rft.au=Spitzer-Rimon,%20Ben&rft.date=2022-12-01&rft.volume=35&rft.issue=4&rft.spage=265&rft.epage=277&rft.pages=265-277&rft.issn=2194-7953&rft.eissn=2194-7961&rft_id=info:doi/10.1007/s00497-022-00449-0&rft_dat=%3Cgale_proqu%3EA728224868%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-167ec490924cd43cb873c38652e083dac05dbcd2a7aa3c7488fd9e0bb33a6d973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2740743459&rft_id=info:pmid/36063227&rft_galeid=A728224868&rfr_iscdi=true |