Loading…

Non-photoperiodic transition of female cannabis seedlings from juvenile to adult reproductive stage

Key message Vegetative-to-reproductive phase transition in female cannabis seedlings occurs autonomously with the de novo development of single flowers. To ensure successful sexual reproduction, many plant species originating from seedlings undergo juvenile-to-adult transition. This phase transition...

Full description

Saved in:
Bibliographic Details
Published in:Plant reproduction 2022-12, Vol.35 (4), p.265-277
Main Authors: Spitzer-Rimon, Ben, Shafran-Tomer, Hadas, Gottlieb, Gilad H., Doron-Faigenboim, Adi, Zemach, Hanita, Kamenetsky-Goldstein, Rina, Flaishman, Moshe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-167ec490924cd43cb873c38652e083dac05dbcd2a7aa3c7488fd9e0bb33a6d973
cites cdi_FETCH-LOGICAL-c378t-167ec490924cd43cb873c38652e083dac05dbcd2a7aa3c7488fd9e0bb33a6d973
container_end_page 277
container_issue 4
container_start_page 265
container_title Plant reproduction
container_volume 35
creator Spitzer-Rimon, Ben
Shafran-Tomer, Hadas
Gottlieb, Gilad H.
Doron-Faigenboim, Adi
Zemach, Hanita
Kamenetsky-Goldstein, Rina
Flaishman, Moshe
description Key message Vegetative-to-reproductive phase transition in female cannabis seedlings occurs autonomously with the de novo development of single flowers. To ensure successful sexual reproduction, many plant species originating from seedlings undergo juvenile-to-adult transition. This phase transition precedes and enables the vegetative-to-reproductive shift in plants, upon perception of internal and/or external signals such as temperature, photoperiod, metabolite levels, and phytohormones. This study demonstrates that the juvenile seedlings of cannabis gradually shift to the adult vegetative stage, as confirmed by the formation of lobed leaves, and upregulation of the phase-transition genes. In the tested cultivar, the switch to the reproductive stage occurs with the development of a pair of single flowers in the 7th node. Histological analysis indicated that transition to the reproductive stage is accomplished by the de novo establishment of new flower meristems which are not present in a vegetative stage, or as dormant meristems at nodes 4 and 6. Moreover, there were dramatic changes in the transcriptomic profile of flowering-related genes among nodes 4, 6, and 7. Downregulation of flowering repressors and an intense increase in the transcription of phase transition-related genes occur in parallel with an increase in the transcription of flowering integrators and meristem identity genes. These results support and provide molecular evidence for previous findings that cannabis possesses an autonomous flowering mechanism and the transition to reproductive phase is controlled in this plant mainly by internal signals.
doi_str_mv 10.1007/s00497-022-00449-0
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2709914862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A728224868</galeid><sourcerecordid>A728224868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-167ec490924cd43cb873c38652e083dac05dbcd2a7aa3c7488fd9e0bb33a6d973</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSNERau2L8ACWWJDFykT24njZVVRqFSBxM_acuxJ8FViX2ynom9fQ0pRWSAvPNJ8Z3RmTlW9bOC8ARBvEwCXogZK61JxWcOz6og2ktdCds3zx7plh9VpSjsAaIA1LfAX1SHroGOUiqPKfAy-3n8POewxumCdITlqn1x2wZMwkhEXPSMx2ns9uEQSop2dnxIZY1jIbr1F7wqQA9F2nTOJuI_Bria7WyQp6wlPqoNRzwlPH_7j6tvVu6-XH-qbT--vLy9uasNEn-umE2i4BEm5sZyZoRfMsL5rKULPrDbQ2sFYqoXWzAje96OVCMPAmO6sFOy4erPNLQZ-rJiyWlwyOM_aY1iTogKkbHjf0YK-_gfdhTX64q5QHARnvJWFOt-oqZxAOT-GchtTnsXFmeBxLJurC0F7SsvYvgjOnggKk_FnnvSakrr-8vkpSzfWxJBSxFHto1t0vFMNqF8Rqy1iVSJWvyNWUESvHnyvw4L2UfIn0AKwDUil5SeMfxf7z9h7vuGwzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2740743459</pqid></control><display><type>article</type><title>Non-photoperiodic transition of female cannabis seedlings from juvenile to adult reproductive stage</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Spitzer-Rimon, Ben ; Shafran-Tomer, Hadas ; Gottlieb, Gilad H. ; Doron-Faigenboim, Adi ; Zemach, Hanita ; Kamenetsky-Goldstein, Rina ; Flaishman, Moshe</creator><creatorcontrib>Spitzer-Rimon, Ben ; Shafran-Tomer, Hadas ; Gottlieb, Gilad H. ; Doron-Faigenboim, Adi ; Zemach, Hanita ; Kamenetsky-Goldstein, Rina ; Flaishman, Moshe</creatorcontrib><description>Key message Vegetative-to-reproductive phase transition in female cannabis seedlings occurs autonomously with the de novo development of single flowers. To ensure successful sexual reproduction, many plant species originating from seedlings undergo juvenile-to-adult transition. This phase transition precedes and enables the vegetative-to-reproductive shift in plants, upon perception of internal and/or external signals such as temperature, photoperiod, metabolite levels, and phytohormones. This study demonstrates that the juvenile seedlings of cannabis gradually shift to the adult vegetative stage, as confirmed by the formation of lobed leaves, and upregulation of the phase-transition genes. In the tested cultivar, the switch to the reproductive stage occurs with the development of a pair of single flowers in the 7th node. Histological analysis indicated that transition to the reproductive stage is accomplished by the de novo establishment of new flower meristems which are not present in a vegetative stage, or as dormant meristems at nodes 4 and 6. Moreover, there were dramatic changes in the transcriptomic profile of flowering-related genes among nodes 4, 6, and 7. Downregulation of flowering repressors and an intense increase in the transcription of phase transition-related genes occur in parallel with an increase in the transcription of flowering integrators and meristem identity genes. These results support and provide molecular evidence for previous findings that cannabis possesses an autonomous flowering mechanism and the transition to reproductive phase is controlled in this plant mainly by internal signals.</description><identifier>ISSN: 2194-7953</identifier><identifier>EISSN: 2194-7961</identifier><identifier>DOI: 10.1007/s00497-022-00449-0</identifier><identifier>PMID: 36063227</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Analysis ; Biomedical and Life Sciences ; Cannabis ; Cannabis - genetics ; Cell Biology ; Cultivars ; Developmental stages ; Females ; Flowering ; Flowers ; Gene Expression Regulation, Plant ; Genes ; Genetic aspects ; Genetic transcription ; Gibberellins ; Life Sciences ; Marijuana ; Meristem - genetics ; Meristems ; Metabolites ; Nodes ; Original Article ; Phase transitions ; Photoperiod ; Plant hormones ; Plant Sciences ; Plant species ; Plants ; Plants (botany) ; Repressors ; Reproduction (biology) ; Reproduction - genetics ; Seedlings ; Seedlings - genetics ; Sexual reproduction ; Temperature perception ; Transcriptomics</subject><ispartof>Plant reproduction, 2022-12, Vol.35 (4), p.265-277</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-167ec490924cd43cb873c38652e083dac05dbcd2a7aa3c7488fd9e0bb33a6d973</citedby><cites>FETCH-LOGICAL-c378t-167ec490924cd43cb873c38652e083dac05dbcd2a7aa3c7488fd9e0bb33a6d973</cites><orcidid>0000-0002-7219-6677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36063227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spitzer-Rimon, Ben</creatorcontrib><creatorcontrib>Shafran-Tomer, Hadas</creatorcontrib><creatorcontrib>Gottlieb, Gilad H.</creatorcontrib><creatorcontrib>Doron-Faigenboim, Adi</creatorcontrib><creatorcontrib>Zemach, Hanita</creatorcontrib><creatorcontrib>Kamenetsky-Goldstein, Rina</creatorcontrib><creatorcontrib>Flaishman, Moshe</creatorcontrib><title>Non-photoperiodic transition of female cannabis seedlings from juvenile to adult reproductive stage</title><title>Plant reproduction</title><addtitle>Plant Reprod</addtitle><addtitle>Plant Reprod</addtitle><description>Key message Vegetative-to-reproductive phase transition in female cannabis seedlings occurs autonomously with the de novo development of single flowers. To ensure successful sexual reproduction, many plant species originating from seedlings undergo juvenile-to-adult transition. This phase transition precedes and enables the vegetative-to-reproductive shift in plants, upon perception of internal and/or external signals such as temperature, photoperiod, metabolite levels, and phytohormones. This study demonstrates that the juvenile seedlings of cannabis gradually shift to the adult vegetative stage, as confirmed by the formation of lobed leaves, and upregulation of the phase-transition genes. In the tested cultivar, the switch to the reproductive stage occurs with the development of a pair of single flowers in the 7th node. Histological analysis indicated that transition to the reproductive stage is accomplished by the de novo establishment of new flower meristems which are not present in a vegetative stage, or as dormant meristems at nodes 4 and 6. Moreover, there were dramatic changes in the transcriptomic profile of flowering-related genes among nodes 4, 6, and 7. Downregulation of flowering repressors and an intense increase in the transcription of phase transition-related genes occur in parallel with an increase in the transcription of flowering integrators and meristem identity genes. These results support and provide molecular evidence for previous findings that cannabis possesses an autonomous flowering mechanism and the transition to reproductive phase is controlled in this plant mainly by internal signals.</description><subject>Agriculture</subject><subject>Analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Cannabis</subject><subject>Cannabis - genetics</subject><subject>Cell Biology</subject><subject>Cultivars</subject><subject>Developmental stages</subject><subject>Females</subject><subject>Flowering</subject><subject>Flowers</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic transcription</subject><subject>Gibberellins</subject><subject>Life Sciences</subject><subject>Marijuana</subject><subject>Meristem - genetics</subject><subject>Meristems</subject><subject>Metabolites</subject><subject>Nodes</subject><subject>Original Article</subject><subject>Phase transitions</subject><subject>Photoperiod</subject><subject>Plant hormones</subject><subject>Plant Sciences</subject><subject>Plant species</subject><subject>Plants</subject><subject>Plants (botany)</subject><subject>Repressors</subject><subject>Reproduction (biology)</subject><subject>Reproduction - genetics</subject><subject>Seedlings</subject><subject>Seedlings - genetics</subject><subject>Sexual reproduction</subject><subject>Temperature perception</subject><subject>Transcriptomics</subject><issn>2194-7953</issn><issn>2194-7961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhSNERau2L8ACWWJDFykT24njZVVRqFSBxM_acuxJ8FViX2ynom9fQ0pRWSAvPNJ8Z3RmTlW9bOC8ARBvEwCXogZK61JxWcOz6og2ktdCds3zx7plh9VpSjsAaIA1LfAX1SHroGOUiqPKfAy-3n8POewxumCdITlqn1x2wZMwkhEXPSMx2ns9uEQSop2dnxIZY1jIbr1F7wqQA9F2nTOJuI_Bria7WyQp6wlPqoNRzwlPH_7j6tvVu6-XH-qbT--vLy9uasNEn-umE2i4BEm5sZyZoRfMsL5rKULPrDbQ2sFYqoXWzAje96OVCMPAmO6sFOy4erPNLQZ-rJiyWlwyOM_aY1iTogKkbHjf0YK-_gfdhTX64q5QHARnvJWFOt-oqZxAOT-GchtTnsXFmeBxLJurC0F7SsvYvgjOnggKk_FnnvSakrr-8vkpSzfWxJBSxFHto1t0vFMNqF8Rqy1iVSJWvyNWUESvHnyvw4L2UfIn0AKwDUil5SeMfxf7z9h7vuGwzw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Spitzer-Rimon, Ben</creator><creator>Shafran-Tomer, Hadas</creator><creator>Gottlieb, Gilad H.</creator><creator>Doron-Faigenboim, Adi</creator><creator>Zemach, Hanita</creator><creator>Kamenetsky-Goldstein, Rina</creator><creator>Flaishman, Moshe</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7219-6677</orcidid></search><sort><creationdate>20221201</creationdate><title>Non-photoperiodic transition of female cannabis seedlings from juvenile to adult reproductive stage</title><author>Spitzer-Rimon, Ben ; Shafran-Tomer, Hadas ; Gottlieb, Gilad H. ; Doron-Faigenboim, Adi ; Zemach, Hanita ; Kamenetsky-Goldstein, Rina ; Flaishman, Moshe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-167ec490924cd43cb873c38652e083dac05dbcd2a7aa3c7488fd9e0bb33a6d973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Cannabis</topic><topic>Cannabis - genetics</topic><topic>Cell Biology</topic><topic>Cultivars</topic><topic>Developmental stages</topic><topic>Females</topic><topic>Flowering</topic><topic>Flowers</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic transcription</topic><topic>Gibberellins</topic><topic>Life Sciences</topic><topic>Marijuana</topic><topic>Meristem - genetics</topic><topic>Meristems</topic><topic>Metabolites</topic><topic>Nodes</topic><topic>Original Article</topic><topic>Phase transitions</topic><topic>Photoperiod</topic><topic>Plant hormones</topic><topic>Plant Sciences</topic><topic>Plant species</topic><topic>Plants</topic><topic>Plants (botany)</topic><topic>Repressors</topic><topic>Reproduction (biology)</topic><topic>Reproduction - genetics</topic><topic>Seedlings</topic><topic>Seedlings - genetics</topic><topic>Sexual reproduction</topic><topic>Temperature perception</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spitzer-Rimon, Ben</creatorcontrib><creatorcontrib>Shafran-Tomer, Hadas</creatorcontrib><creatorcontrib>Gottlieb, Gilad H.</creatorcontrib><creatorcontrib>Doron-Faigenboim, Adi</creatorcontrib><creatorcontrib>Zemach, Hanita</creatorcontrib><creatorcontrib>Kamenetsky-Goldstein, Rina</creatorcontrib><creatorcontrib>Flaishman, Moshe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Plant reproduction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spitzer-Rimon, Ben</au><au>Shafran-Tomer, Hadas</au><au>Gottlieb, Gilad H.</au><au>Doron-Faigenboim, Adi</au><au>Zemach, Hanita</au><au>Kamenetsky-Goldstein, Rina</au><au>Flaishman, Moshe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-photoperiodic transition of female cannabis seedlings from juvenile to adult reproductive stage</atitle><jtitle>Plant reproduction</jtitle><stitle>Plant Reprod</stitle><addtitle>Plant Reprod</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>35</volume><issue>4</issue><spage>265</spage><epage>277</epage><pages>265-277</pages><issn>2194-7953</issn><eissn>2194-7961</eissn><abstract>Key message Vegetative-to-reproductive phase transition in female cannabis seedlings occurs autonomously with the de novo development of single flowers. To ensure successful sexual reproduction, many plant species originating from seedlings undergo juvenile-to-adult transition. This phase transition precedes and enables the vegetative-to-reproductive shift in plants, upon perception of internal and/or external signals such as temperature, photoperiod, metabolite levels, and phytohormones. This study demonstrates that the juvenile seedlings of cannabis gradually shift to the adult vegetative stage, as confirmed by the formation of lobed leaves, and upregulation of the phase-transition genes. In the tested cultivar, the switch to the reproductive stage occurs with the development of a pair of single flowers in the 7th node. Histological analysis indicated that transition to the reproductive stage is accomplished by the de novo establishment of new flower meristems which are not present in a vegetative stage, or as dormant meristems at nodes 4 and 6. Moreover, there were dramatic changes in the transcriptomic profile of flowering-related genes among nodes 4, 6, and 7. Downregulation of flowering repressors and an intense increase in the transcription of phase transition-related genes occur in parallel with an increase in the transcription of flowering integrators and meristem identity genes. These results support and provide molecular evidence for previous findings that cannabis possesses an autonomous flowering mechanism and the transition to reproductive phase is controlled in this plant mainly by internal signals.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36063227</pmid><doi>10.1007/s00497-022-00449-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7219-6677</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2194-7953
ispartof Plant reproduction, 2022-12, Vol.35 (4), p.265-277
issn 2194-7953
2194-7961
language eng
recordid cdi_proquest_miscellaneous_2709914862
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Agriculture
Analysis
Biomedical and Life Sciences
Cannabis
Cannabis - genetics
Cell Biology
Cultivars
Developmental stages
Females
Flowering
Flowers
Gene Expression Regulation, Plant
Genes
Genetic aspects
Genetic transcription
Gibberellins
Life Sciences
Marijuana
Meristem - genetics
Meristems
Metabolites
Nodes
Original Article
Phase transitions
Photoperiod
Plant hormones
Plant Sciences
Plant species
Plants
Plants (botany)
Repressors
Reproduction (biology)
Reproduction - genetics
Seedlings
Seedlings - genetics
Sexual reproduction
Temperature perception
Transcriptomics
title Non-photoperiodic transition of female cannabis seedlings from juvenile to adult reproductive stage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-photoperiodic%20transition%20of%20female%20cannabis%20seedlings%20from%20juvenile%20to%20adult%20reproductive%20stage&rft.jtitle=Plant%20reproduction&rft.au=Spitzer-Rimon,%20Ben&rft.date=2022-12-01&rft.volume=35&rft.issue=4&rft.spage=265&rft.epage=277&rft.pages=265-277&rft.issn=2194-7953&rft.eissn=2194-7961&rft_id=info:doi/10.1007/s00497-022-00449-0&rft_dat=%3Cgale_proqu%3EA728224868%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-167ec490924cd43cb873c38652e083dac05dbcd2a7aa3c7488fd9e0bb33a6d973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2740743459&rft_id=info:pmid/36063227&rft_galeid=A728224868&rfr_iscdi=true