Loading…
Associations between urinary biomarkers of oxidative stress and biomarkers of tobacco smoke exposure in smokers
Oxidative stress can contribute to the development of diseases, and may originate from exposures to toxicants commonly found in air pollution and cigarette smoke such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Yet, associations between these exposures and oxida...
Saved in:
Published in: | The Science of the total environment 2022-12, Vol.852, p.158361-158361, Article 158361 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Oxidative stress can contribute to the development of diseases, and may originate from exposures to toxicants commonly found in air pollution and cigarette smoke such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Yet, associations between these exposures and oxidative stress biomarkers are poorly characterized. We report here novel associations between 14 exposure biomarkers of PAHs and VOCs, and two oxidative stress biomarkers; 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 8-isoprostaglandin F2α (8-isoprostane) in urine obtained from smokers participating in an ongoing clinical study (ESTxENDS, NCT03589989). We also assessed associations between six biomarkers of tobacco smoke exposure (metabolites of nicotine and tobacco-specific nitrosamines (TSNAs)) and both oxidative stress biomarkers. We then quantified the relative importance of each family of the 20 exposure biomarkers on oxidative stress. Participating smokers (153 men and 117 women, median age 44 years) had on average smoked 25 [2–62] years and smoked about 17 [5–40] cigarettes per day at the time of the study. Multiple linear regression results showed an association between 8-oxodG concentrations and the following metabolites in decreasing relative importance: PAHs (beta coefficient β = 0.105, p-value VOCs (β = 0.028, p < 0.001, partial R2 = 0.09) > nicotine (β = 0.226, p < 0.001, partial R2 = 0.08); and between 8-isoprostane concentrations and metabolites of PAHs (β = 0.117, p < 0.001, partial R2 = 0.14) > VOCs (β = 0.040, p < 0.001, partial R2 = 0.14) > TSNAs (β = 0.202, p = 0.003, partial R2 = 0.09) > nicotine (β = 0.266, p < 0.001, partial R2 = 0.08). Behavioral factors known to contribute to oxidative stress, including sleep quality, physical activity, and alcohol consumption, did not play a significant role. Exposures to PAHs and VOCs among smokers were significantly associated with oxidative stress.
[Display omitted]
•Oxidative stress biomarkers were associated with environmental pollutant biomarkers.•14 exposure biomarkers for environmental pollutants were quantified in 270 smokers.•6 urinary biomarkers of tobacco smoke exposure were quantified in 270 smokers.•8-OxodG concentrations were associated with PAH, VOC, and nicotine exposures.•8-Isoprostane were associated with PAH, VOC, nicotine, and nitrosamine exposures. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2022.158361 |