Loading…
Optimization flow control. I. Basic algorithm and convergence
We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using a gradient projection algorithm. In t...
Saved in:
Published in: | IEEE/ACM transactions on networking 1999-12, Vol.7 (6), p.861-874 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c442t-94178dabe1a32b259e2acdc387a1b24972932296ddbe6df6de61aeaad2d62e813 |
---|---|
cites | cdi_FETCH-LOGICAL-c442t-94178dabe1a32b259e2acdc387a1b24972932296ddbe6df6de61aeaad2d62e813 |
container_end_page | 874 |
container_issue | 6 |
container_start_page | 861 |
container_title | IEEE/ACM transactions on networking |
container_volume | 7 |
creator | Low, S.H. Lapsley, D.E. |
description | We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using a gradient projection algorithm. In this system, sources select transmission rates that maximize their own benefits, utility minus bandwidth cost, and network links adjust bandwidth prices to coordinate the sources' decisions. We allow feedback delays to be different, substantial, and time varying, and links and sources to update at different times and with different frequencies. We provide asynchronous distributed algorithms and prove their convergence in a static environment. We present measurements obtained from a preliminary prototype to illustrate the convergence of the algorithm in a slowly time-varying environment. We discuss its fairness property. |
doi_str_mv | 10.1109/90.811451 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_27100914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>811451</ieee_id><sourcerecordid>27100914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-94178dabe1a32b259e2acdc387a1b24972932296ddbe6df6de61aeaad2d62e813</originalsourceid><addsrcrecordid>eNqF0L1PwzAQBXALgUQpDKxMmRAMCT7HceKBgVZ8VKrUBebIsS_FKImLnYLgrydVKkaY7qT30xseIedAEwAqbyRNCgCewQGZQJYVMcuEOBx-KtJYCMmOyUkIb5RCSpmYkNvVpret_Va9dV1UN-4z0q7rvWuSaJFEMxWsjlSzdt72r22kOrPLP9CvsdN4So5q1QQ8298peXm4f54_xcvV42J-t4w156yPJYe8MKpCUCmrWCaRKW10WuQKKsZlzmTKmBTGVChMLQwKUKiUYUYwLCCdksuxd-Pd-xZDX7Y2aGwa1aHbhpIVGZdCZP_DHCiVwAd49ScEkUPKBYV8oNcj1d6F4LEuN962yn-VQMvd6KWk5Tj6YC9GaxHx1-3DH0khex8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671346017</pqid></control><display><type>article</type><title>Optimization flow control. I. Basic algorithm and convergence</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><source>IEEE Xplore (Online service)</source><creator>Low, S.H. ; Lapsley, D.E.</creator><creatorcontrib>Low, S.H. ; Lapsley, D.E.</creatorcontrib><description>We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using a gradient projection algorithm. In this system, sources select transmission rates that maximize their own benefits, utility minus bandwidth cost, and network links adjust bandwidth prices to coordinate the sources' decisions. We allow feedback delays to be different, substantial, and time varying, and links and sources to update at different times and with different frequencies. We provide asynchronous distributed algorithms and prove their convergence in a static environment. We present measurements obtained from a preliminary prototype to illustrate the convergence of the algorithm in a slowly time-varying environment. We discuss its fairness property.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/90.811451</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregates ; Algorithms ; Bandwidth ; Computer networks ; Convergence ; Costs ; Delay effects ; Distributed computing ; Feedback ; Flow control ; Frequency ; Links ; Networks ; Optimization ; Projection algorithms ; Utilities</subject><ispartof>IEEE/ACM transactions on networking, 1999-12, Vol.7 (6), p.861-874</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-94178dabe1a32b259e2acdc387a1b24972932296ddbe6df6de61aeaad2d62e813</citedby><cites>FETCH-LOGICAL-c442t-94178dabe1a32b259e2acdc387a1b24972932296ddbe6df6de61aeaad2d62e813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/811451$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Low, S.H.</creatorcontrib><creatorcontrib>Lapsley, D.E.</creatorcontrib><title>Optimization flow control. I. Basic algorithm and convergence</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using a gradient projection algorithm. In this system, sources select transmission rates that maximize their own benefits, utility minus bandwidth cost, and network links adjust bandwidth prices to coordinate the sources' decisions. We allow feedback delays to be different, substantial, and time varying, and links and sources to update at different times and with different frequencies. We provide asynchronous distributed algorithms and prove their convergence in a static environment. We present measurements obtained from a preliminary prototype to illustrate the convergence of the algorithm in a slowly time-varying environment. We discuss its fairness property.</description><subject>Aggregates</subject><subject>Algorithms</subject><subject>Bandwidth</subject><subject>Computer networks</subject><subject>Convergence</subject><subject>Costs</subject><subject>Delay effects</subject><subject>Distributed computing</subject><subject>Feedback</subject><subject>Flow control</subject><subject>Frequency</subject><subject>Links</subject><subject>Networks</subject><subject>Optimization</subject><subject>Projection algorithms</subject><subject>Utilities</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqF0L1PwzAQBXALgUQpDKxMmRAMCT7HceKBgVZ8VKrUBebIsS_FKImLnYLgrydVKkaY7qT30xseIedAEwAqbyRNCgCewQGZQJYVMcuEOBx-KtJYCMmOyUkIb5RCSpmYkNvVpret_Va9dV1UN-4z0q7rvWuSaJFEMxWsjlSzdt72r22kOrPLP9CvsdN4So5q1QQ8298peXm4f54_xcvV42J-t4w156yPJYe8MKpCUCmrWCaRKW10WuQKKsZlzmTKmBTGVChMLQwKUKiUYUYwLCCdksuxd-Pd-xZDX7Y2aGwa1aHbhpIVGZdCZP_DHCiVwAd49ScEkUPKBYV8oNcj1d6F4LEuN962yn-VQMvd6KWk5Tj6YC9GaxHx1-3DH0khex8</recordid><startdate>19991201</startdate><enddate>19991201</enddate><creator>Low, S.H.</creator><creator>Lapsley, D.E.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19991201</creationdate><title>Optimization flow control. I. Basic algorithm and convergence</title><author>Low, S.H. ; Lapsley, D.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-94178dabe1a32b259e2acdc387a1b24972932296ddbe6df6de61aeaad2d62e813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Aggregates</topic><topic>Algorithms</topic><topic>Bandwidth</topic><topic>Computer networks</topic><topic>Convergence</topic><topic>Costs</topic><topic>Delay effects</topic><topic>Distributed computing</topic><topic>Feedback</topic><topic>Flow control</topic><topic>Frequency</topic><topic>Links</topic><topic>Networks</topic><topic>Optimization</topic><topic>Projection algorithms</topic><topic>Utilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Low, S.H.</creatorcontrib><creatorcontrib>Lapsley, D.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Low, S.H.</au><au>Lapsley, D.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization flow control. I. Basic algorithm and convergence</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>1999-12-01</date><risdate>1999</risdate><volume>7</volume><issue>6</issue><spage>861</spage><epage>874</epage><pages>861-874</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using a gradient projection algorithm. In this system, sources select transmission rates that maximize their own benefits, utility minus bandwidth cost, and network links adjust bandwidth prices to coordinate the sources' decisions. We allow feedback delays to be different, substantial, and time varying, and links and sources to update at different times and with different frequencies. We provide asynchronous distributed algorithms and prove their convergence in a static environment. We present measurements obtained from a preliminary prototype to illustrate the convergence of the algorithm in a slowly time-varying environment. We discuss its fairness property.</abstract><pub>IEEE</pub><doi>10.1109/90.811451</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6692 |
ispartof | IEEE/ACM transactions on networking, 1999-12, Vol.7 (6), p.861-874 |
issn | 1063-6692 1558-2566 |
language | eng |
recordid | cdi_proquest_miscellaneous_27100914 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list); IEEE Xplore (Online service) |
subjects | Aggregates Algorithms Bandwidth Computer networks Convergence Costs Delay effects Distributed computing Feedback Flow control Frequency Links Networks Optimization Projection algorithms Utilities |
title | Optimization flow control. I. Basic algorithm and convergence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20flow%20control.%20I.%20Basic%20algorithm%20and%20convergence&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Low,%20S.H.&rft.date=1999-12-01&rft.volume=7&rft.issue=6&rft.spage=861&rft.epage=874&rft.pages=861-874&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/90.811451&rft_dat=%3Cproquest_ieee_%3E27100914%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-94178dabe1a32b259e2acdc387a1b24972932296ddbe6df6de61aeaad2d62e813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671346017&rft_id=info:pmid/&rft_ieee_id=811451&rfr_iscdi=true |