Loading…
A second-order Rosenbrock method applied to photochemical dispersion problems
A second-order, L-stable Rosenbrock method from the field of stiff ordinary differential equations is studied for application to atmospheric dispersion problems describing photochemistry, advective, and turbulent diffusive transport. Partial differential equation problems of this type occur in the f...
Saved in:
Published in: | SIAM journal on scientific computing 1999, Vol.20 (4), p.1456-1480 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A second-order, L-stable Rosenbrock method from the field of stiff ordinary differential equations is studied for application to atmospheric dispersion problems describing photochemistry, advective, and turbulent diffusive transport. Partial differential equation problems of this type occur in the field of air pollution modeling. The focal point of the paper is to examine the Rosenbrock method for reliable and efficient use as an atmospheric chemical kinetics box-model solver within Strang-type operator splitting. In addition, two W-method versions of the Rosenbrock method are discussed. These versions use an inexact Jacobian matrix and are meant to provide alternatives for Strang-splitting. Another alternative for Strang-splitting is a technique based on so-called source-splitting. This technique is briefly discussed [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1064-8275 1095-7197 |
DOI: | 10.1137/s1064827597326651 |