Loading…

Design and performance of an erbium-doped silicon waveguide detector operating at 1.5 μm

A new concept for an infrared waveguide detector based on silicon is introduced. It is fabricated using silicon-on-insulator material, and consists of an erbium-doped p-n junction located in the core of a silicon ridge waveguide. The detection scheme relies on the optical absorption of 1.5- mu m lig...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 2002-05, Vol.20 (5), p.862-867
Main Authors: Kik, P G, Polman, A, Libertino, S, Coffa, S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2621-bec8d378f495095f39849bce6864125c3b4536af50cca114735ab68e64f481693
cites cdi_FETCH-LOGICAL-c2621-bec8d378f495095f39849bce6864125c3b4536af50cca114735ab68e64f481693
container_end_page 867
container_issue 5
container_start_page 862
container_title Journal of lightwave technology
container_volume 20
creator Kik, P G
Polman, A
Libertino, S
Coffa, S
description A new concept for an infrared waveguide detector based on silicon is introduced. It is fabricated using silicon-on-insulator material, and consists of an erbium-doped p-n junction located in the core of a silicon ridge waveguide. The detection scheme relies on the optical absorption of 1.5- mu m light by Er super(3+) ions in the waveguide core, followed by electron-hole pair generation by the excited Er and subsequent carrier separation by the electric field of the p-n junction. By performing optical mode calculations and including realistic doping profiles, we show that an external quantum efficiency of 10 super(-3) can be achieved in a 4-cm-long waveguide detector fabricated using standard silicon processing. It is found that the quantum efficiency of the detector is mainly limited by free carrier absorption in the waveguide core, and may be further enhanced by optimizing the electrical doping profiles. Preliminary photocurrent measurements on an erbium-doped Si waveguide detector at room temperature show a clear erbium related photocurrent at 1.5 mu m.
doi_str_mv 10.1109/JLT.2002.1007941
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27109746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27109746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2621-bec8d378f495095f39849bce6864125c3b4536af50cca114735ab68e64f481693</originalsourceid><addsrcrecordid>eNp9kLtOwzAYhTOARCnsjJ4QS4LvsUdU7qrEUgamyHF-V0ZJHOwExLvxDDwTqdqZ6UjnfDrDl2UXBBeEYH39vN4UFGNaEIxLzclRtsAlY7kqKT_JTlN6x5hwrspF9nYLyW97ZPoGDRBdiJ3pLaDg5gpBrP3U5U0YoEHJt96GHn2ZT9hOvgHUwAh2DBHNezSj77fIjIgUAv3-dGfZsTNtgvNDLrPX-7vN6jFfvzw8rW7WuaWSkrwGqxpWKse1wFo4phXXtQWpJCdUWFZzwaRxAltrCOElE6aWCiR3XBGp2TK73P8OMXxMkMaq88lC25oewpQqWs5KSi5n8OpfkGBGqNZS7D7xHrUxpBTBVUP0nYnfM1TtFFez4mqnuDooZn_sNXAV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031299659</pqid></control><display><type>article</type><title>Design and performance of an erbium-doped silicon waveguide detector operating at 1.5 μm</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kik, P G ; Polman, A ; Libertino, S ; Coffa, S</creator><creatorcontrib>Kik, P G ; Polman, A ; Libertino, S ; Coffa, S</creatorcontrib><description>A new concept for an infrared waveguide detector based on silicon is introduced. It is fabricated using silicon-on-insulator material, and consists of an erbium-doped p-n junction located in the core of a silicon ridge waveguide. The detection scheme relies on the optical absorption of 1.5- mu m light by Er super(3+) ions in the waveguide core, followed by electron-hole pair generation by the excited Er and subsequent carrier separation by the electric field of the p-n junction. By performing optical mode calculations and including realistic doping profiles, we show that an external quantum efficiency of 10 super(-3) can be achieved in a 4-cm-long waveguide detector fabricated using standard silicon processing. It is found that the quantum efficiency of the detector is mainly limited by free carrier absorption in the waveguide core, and may be further enhanced by optimizing the electrical doping profiles. Preliminary photocurrent measurements on an erbium-doped Si waveguide detector at room temperature show a clear erbium related photocurrent at 1.5 mu m.</description><identifier>ISSN: 0733-8724</identifier><identifier>DOI: 10.1109/JLT.2002.1007941</identifier><language>eng</language><subject>Detectors ; Doping ; Erbium ; Photocurrent ; Photoelectric effect ; Quantum efficiency ; Silicon ; Waveguides</subject><ispartof>Journal of lightwave technology, 2002-05, Vol.20 (5), p.862-867</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2621-bec8d378f495095f39849bce6864125c3b4536af50cca114735ab68e64f481693</citedby><cites>FETCH-LOGICAL-c2621-bec8d378f495095f39849bce6864125c3b4536af50cca114735ab68e64f481693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kik, P G</creatorcontrib><creatorcontrib>Polman, A</creatorcontrib><creatorcontrib>Libertino, S</creatorcontrib><creatorcontrib>Coffa, S</creatorcontrib><title>Design and performance of an erbium-doped silicon waveguide detector operating at 1.5 μm</title><title>Journal of lightwave technology</title><description>A new concept for an infrared waveguide detector based on silicon is introduced. It is fabricated using silicon-on-insulator material, and consists of an erbium-doped p-n junction located in the core of a silicon ridge waveguide. The detection scheme relies on the optical absorption of 1.5- mu m light by Er super(3+) ions in the waveguide core, followed by electron-hole pair generation by the excited Er and subsequent carrier separation by the electric field of the p-n junction. By performing optical mode calculations and including realistic doping profiles, we show that an external quantum efficiency of 10 super(-3) can be achieved in a 4-cm-long waveguide detector fabricated using standard silicon processing. It is found that the quantum efficiency of the detector is mainly limited by free carrier absorption in the waveguide core, and may be further enhanced by optimizing the electrical doping profiles. Preliminary photocurrent measurements on an erbium-doped Si waveguide detector at room temperature show a clear erbium related photocurrent at 1.5 mu m.</description><subject>Detectors</subject><subject>Doping</subject><subject>Erbium</subject><subject>Photocurrent</subject><subject>Photoelectric effect</subject><subject>Quantum efficiency</subject><subject>Silicon</subject><subject>Waveguides</subject><issn>0733-8724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAYhTOARCnsjJ4QS4LvsUdU7qrEUgamyHF-V0ZJHOwExLvxDDwTqdqZ6UjnfDrDl2UXBBeEYH39vN4UFGNaEIxLzclRtsAlY7kqKT_JTlN6x5hwrspF9nYLyW97ZPoGDRBdiJ3pLaDg5gpBrP3U5U0YoEHJt96GHn2ZT9hOvgHUwAh2DBHNezSj77fIjIgUAv3-dGfZsTNtgvNDLrPX-7vN6jFfvzw8rW7WuaWSkrwGqxpWKse1wFo4phXXtQWpJCdUWFZzwaRxAltrCOElE6aWCiR3XBGp2TK73P8OMXxMkMaq88lC25oewpQqWs5KSi5n8OpfkGBGqNZS7D7xHrUxpBTBVUP0nYnfM1TtFFez4mqnuDooZn_sNXAV</recordid><startdate>200205</startdate><enddate>200205</enddate><creator>Kik, P G</creator><creator>Polman, A</creator><creator>Libertino, S</creator><creator>Coffa, S</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200205</creationdate><title>Design and performance of an erbium-doped silicon waveguide detector operating at 1.5 μm</title><author>Kik, P G ; Polman, A ; Libertino, S ; Coffa, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2621-bec8d378f495095f39849bce6864125c3b4536af50cca114735ab68e64f481693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Detectors</topic><topic>Doping</topic><topic>Erbium</topic><topic>Photocurrent</topic><topic>Photoelectric effect</topic><topic>Quantum efficiency</topic><topic>Silicon</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kik, P G</creatorcontrib><creatorcontrib>Polman, A</creatorcontrib><creatorcontrib>Libertino, S</creatorcontrib><creatorcontrib>Coffa, S</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kik, P G</au><au>Polman, A</au><au>Libertino, S</au><au>Coffa, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and performance of an erbium-doped silicon waveguide detector operating at 1.5 μm</atitle><jtitle>Journal of lightwave technology</jtitle><date>2002-05</date><risdate>2002</risdate><volume>20</volume><issue>5</issue><spage>862</spage><epage>867</epage><pages>862-867</pages><issn>0733-8724</issn><abstract>A new concept for an infrared waveguide detector based on silicon is introduced. It is fabricated using silicon-on-insulator material, and consists of an erbium-doped p-n junction located in the core of a silicon ridge waveguide. The detection scheme relies on the optical absorption of 1.5- mu m light by Er super(3+) ions in the waveguide core, followed by electron-hole pair generation by the excited Er and subsequent carrier separation by the electric field of the p-n junction. By performing optical mode calculations and including realistic doping profiles, we show that an external quantum efficiency of 10 super(-3) can be achieved in a 4-cm-long waveguide detector fabricated using standard silicon processing. It is found that the quantum efficiency of the detector is mainly limited by free carrier absorption in the waveguide core, and may be further enhanced by optimizing the electrical doping profiles. Preliminary photocurrent measurements on an erbium-doped Si waveguide detector at room temperature show a clear erbium related photocurrent at 1.5 mu m.</abstract><doi>10.1109/JLT.2002.1007941</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2002-05, Vol.20 (5), p.862-867
issn 0733-8724
language eng
recordid cdi_proquest_miscellaneous_27109746
source IEEE Electronic Library (IEL) Journals
subjects Detectors
Doping
Erbium
Photocurrent
Photoelectric effect
Quantum efficiency
Silicon
Waveguides
title Design and performance of an erbium-doped silicon waveguide detector operating at 1.5 μm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20performance%20of%20an%20erbium-doped%20silicon%20waveguide%20detector%20operating%20at%201.5%20%CE%BCm&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Kik,%20P%20G&rft.date=2002-05&rft.volume=20&rft.issue=5&rft.spage=862&rft.epage=867&rft.pages=862-867&rft.issn=0733-8724&rft_id=info:doi/10.1109/JLT.2002.1007941&rft_dat=%3Cproquest_cross%3E27109746%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2621-bec8d378f495095f39849bce6864125c3b4536af50cca114735ab68e64f481693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1031299659&rft_id=info:pmid/&rfr_iscdi=true