Loading…

Models to predict live weight from heart girth in crossbred beef heifers

The objective of this study was to develop and evaluate linear, quadratic, and exponential mathematical models to predict live weight (LW) from heart girth (HG) in crossbred heifers raised in tropical humid conditions in Mexico. Live weight (363.32 ± 150.88 kg) and HG (166.83 ± 24.88 cm) were measur...

Full description

Saved in:
Bibliographic Details
Published in:Tropical animal health and production 2022-10, Vol.54 (5), p.275-275, Article 275
Main Authors: Chico-Alcudia, Denis R., Portillo-Salgado, Rodrigo, Camacho-Pérez, Enrique, Peralta-Torres, Jorge A., Angeles-Hernandez, Juan C., Muñoz-Benitez, Alfonso L., Lendechy, Víctor Hugo Severino, Gurgel, Antonio Leandro Chaves, dos Santos Difante, Gelson, Ítavo, Luís Carlos Vinhas, Chay-Canul, Alfonso J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-123a5f7e222077e5a93f6d6412b6c47ecd70f3fe7452c60b7f732f290e5846183
cites cdi_FETCH-LOGICAL-c352t-123a5f7e222077e5a93f6d6412b6c47ecd70f3fe7452c60b7f732f290e5846183
container_end_page 275
container_issue 5
container_start_page 275
container_title Tropical animal health and production
container_volume 54
creator Chico-Alcudia, Denis R.
Portillo-Salgado, Rodrigo
Camacho-Pérez, Enrique
Peralta-Torres, Jorge A.
Angeles-Hernandez, Juan C.
Muñoz-Benitez, Alfonso L.
Lendechy, Víctor Hugo Severino
Gurgel, Antonio Leandro Chaves
dos Santos Difante, Gelson
Ítavo, Luís Carlos Vinhas
Chay-Canul, Alfonso J.
description The objective of this study was to develop and evaluate linear, quadratic, and exponential mathematical models to predict live weight (LW) from heart girth (HG) in crossbred heifers raised in tropical humid conditions in Mexico. Live weight (363.32 ± 150.88 kg) and HG (166.83 ± 24.88 cm) were measured in 400 heifers aged between 3 and 24 months. Linear and non-linear regression was used to construct the prediction models. The goodness of fit of the models was evaluated using the Akaike information criterion (AIC), the Bayesian information criterion (BIC), coefficient of determination ( R 2 ), mean squared error (MSE), and root MSE (RMSE). In addition, the developed models were evaluated through internal and external cross-validation ( k -folds) using independent data. The ability of the fitted models to predict the observed values was evaluated based on the root mean square error of prediction (RMSEP), R 2 , and mean absolute error (MAE). The correlation coefficient between LW and HG was r  = 0.98 ( P  
doi_str_mv 10.1007/s11250-022-03276-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2711307639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711093399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-123a5f7e222077e5a93f6d6412b6c47ecd70f3fe7452c60b7f732f290e5846183</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKcFL16isx_JJEcpaoWKFz0v-Zhtt6RJ3U0V_73bRhA8eJrDPM_LzMvYpYAbAYC3QQiZQgJSJqAkZgkesYlIUSWoVX7MJgC6SDRqPGVnIawBopZnEzZ_7htqAx96vvXUuHrgrfsg_kluuRq49f2Gr6j0A186P6y463jt-xCqCPOKyMats-TDOTuxZRvo4mdO2dvD_etsnixeHp9md4ukVqkcEiFVmVokKSUgUloWymZNpoWssloj1Q2CVZZQp7LOoEKLSlpZAKW5zkSupux6zN36_n1HYTAbF2pq27KjfheMRCEUYKaKiF79Qdf9znfxugMFhVLFnpIjdfjLkzVb7zal_zICzL5cM5ZrYrnmUK7BKKlRChHuluR_o_-xvgEec3qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711093399</pqid></control><display><type>article</type><title>Models to predict live weight from heart girth in crossbred beef heifers</title><source>Springer Link</source><creator>Chico-Alcudia, Denis R. ; Portillo-Salgado, Rodrigo ; Camacho-Pérez, Enrique ; Peralta-Torres, Jorge A. ; Angeles-Hernandez, Juan C. ; Muñoz-Benitez, Alfonso L. ; Lendechy, Víctor Hugo Severino ; Gurgel, Antonio Leandro Chaves ; dos Santos Difante, Gelson ; Ítavo, Luís Carlos Vinhas ; Chay-Canul, Alfonso J.</creator><creatorcontrib>Chico-Alcudia, Denis R. ; Portillo-Salgado, Rodrigo ; Camacho-Pérez, Enrique ; Peralta-Torres, Jorge A. ; Angeles-Hernandez, Juan C. ; Muñoz-Benitez, Alfonso L. ; Lendechy, Víctor Hugo Severino ; Gurgel, Antonio Leandro Chaves ; dos Santos Difante, Gelson ; Ítavo, Luís Carlos Vinhas ; Chay-Canul, Alfonso J.</creatorcontrib><description>The objective of this study was to develop and evaluate linear, quadratic, and exponential mathematical models to predict live weight (LW) from heart girth (HG) in crossbred heifers raised in tropical humid conditions in Mexico. Live weight (363.32 ± 150.88 kg) and HG (166.83 ± 24.88 cm) were measured in 400 heifers aged between 3 and 24 months. Linear and non-linear regression was used to construct the prediction models. The goodness of fit of the models was evaluated using the Akaike information criterion (AIC), the Bayesian information criterion (BIC), coefficient of determination ( R 2 ), mean squared error (MSE), and root MSE (RMSE). In addition, the developed models were evaluated through internal and external cross-validation ( k -folds) using independent data. The ability of the fitted models to predict the observed values was evaluated based on the root mean square error of prediction (RMSEP), R 2 , and mean absolute error (MAE). The correlation coefficient between LW and HG was r  = 0.98 ( P  &lt; 0.001). The quadratic model showed the lowest values of MAE (736.57), RMSEP (27.13), AIC (3783.95), and BIC (3799.91). Additionally, this model exhibited better goodness-of-fit values regarding external and internal validation criteria (higher R 2 and lower RMSEP and MAE), thus having better predictive performance. The RMSE represented about 8% of the observed LW. Heart girth is highly correlated ( r  = 0.98) with LW. The quadratic model showed a high predictive capacity for crossbred heifers kept in tropical conditions.</description><identifier>ISSN: 0049-4747</identifier><identifier>EISSN: 1573-7438</identifier><identifier>DOI: 10.1007/s11250-022-03276-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animals ; Bayesian analysis ; Beef ; Biomedical and Life Sciences ; Biometrics ; Cattle ; Correlation coefficient ; Correlation coefficients ; Criteria ; Farms ; Goodness of fit ; Heart ; Life Sciences ; Livestock ; Mathematical models ; Performance prediction ; Prediction models ; Regular Articles ; Root-mean-square errors ; Veterinary Medicine/Veterinary Science ; Weight ; Zoology</subject><ispartof>Tropical animal health and production, 2022-10, Vol.54 (5), p.275-275, Article 275</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-123a5f7e222077e5a93f6d6412b6c47ecd70f3fe7452c60b7f732f290e5846183</citedby><cites>FETCH-LOGICAL-c352t-123a5f7e222077e5a93f6d6412b6c47ecd70f3fe7452c60b7f732f290e5846183</cites><orcidid>0000-0001-5911-369X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chico-Alcudia, Denis R.</creatorcontrib><creatorcontrib>Portillo-Salgado, Rodrigo</creatorcontrib><creatorcontrib>Camacho-Pérez, Enrique</creatorcontrib><creatorcontrib>Peralta-Torres, Jorge A.</creatorcontrib><creatorcontrib>Angeles-Hernandez, Juan C.</creatorcontrib><creatorcontrib>Muñoz-Benitez, Alfonso L.</creatorcontrib><creatorcontrib>Lendechy, Víctor Hugo Severino</creatorcontrib><creatorcontrib>Gurgel, Antonio Leandro Chaves</creatorcontrib><creatorcontrib>dos Santos Difante, Gelson</creatorcontrib><creatorcontrib>Ítavo, Luís Carlos Vinhas</creatorcontrib><creatorcontrib>Chay-Canul, Alfonso J.</creatorcontrib><title>Models to predict live weight from heart girth in crossbred beef heifers</title><title>Tropical animal health and production</title><addtitle>Trop Anim Health Prod</addtitle><description>The objective of this study was to develop and evaluate linear, quadratic, and exponential mathematical models to predict live weight (LW) from heart girth (HG) in crossbred heifers raised in tropical humid conditions in Mexico. Live weight (363.32 ± 150.88 kg) and HG (166.83 ± 24.88 cm) were measured in 400 heifers aged between 3 and 24 months. Linear and non-linear regression was used to construct the prediction models. The goodness of fit of the models was evaluated using the Akaike information criterion (AIC), the Bayesian information criterion (BIC), coefficient of determination ( R 2 ), mean squared error (MSE), and root MSE (RMSE). In addition, the developed models were evaluated through internal and external cross-validation ( k -folds) using independent data. The ability of the fitted models to predict the observed values was evaluated based on the root mean square error of prediction (RMSEP), R 2 , and mean absolute error (MAE). The correlation coefficient between LW and HG was r  = 0.98 ( P  &lt; 0.001). The quadratic model showed the lowest values of MAE (736.57), RMSEP (27.13), AIC (3783.95), and BIC (3799.91). Additionally, this model exhibited better goodness-of-fit values regarding external and internal validation criteria (higher R 2 and lower RMSEP and MAE), thus having better predictive performance. The RMSE represented about 8% of the observed LW. Heart girth is highly correlated ( r  = 0.98) with LW. The quadratic model showed a high predictive capacity for crossbred heifers kept in tropical conditions.</description><subject>Animals</subject><subject>Bayesian analysis</subject><subject>Beef</subject><subject>Biomedical and Life Sciences</subject><subject>Biometrics</subject><subject>Cattle</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Criteria</subject><subject>Farms</subject><subject>Goodness of fit</subject><subject>Heart</subject><subject>Life Sciences</subject><subject>Livestock</subject><subject>Mathematical models</subject><subject>Performance prediction</subject><subject>Prediction models</subject><subject>Regular Articles</subject><subject>Root-mean-square errors</subject><subject>Veterinary Medicine/Veterinary Science</subject><subject>Weight</subject><subject>Zoology</subject><issn>0049-4747</issn><issn>1573-7438</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKcFL16isx_JJEcpaoWKFz0v-Zhtt6RJ3U0V_73bRhA8eJrDPM_LzMvYpYAbAYC3QQiZQgJSJqAkZgkesYlIUSWoVX7MJgC6SDRqPGVnIawBopZnEzZ_7htqAx96vvXUuHrgrfsg_kluuRq49f2Gr6j0A186P6y463jt-xCqCPOKyMats-TDOTuxZRvo4mdO2dvD_etsnixeHp9md4ukVqkcEiFVmVokKSUgUloWymZNpoWssloj1Q2CVZZQp7LOoEKLSlpZAKW5zkSupux6zN36_n1HYTAbF2pq27KjfheMRCEUYKaKiF79Qdf9znfxugMFhVLFnpIjdfjLkzVb7zal_zICzL5cM5ZrYrnmUK7BKKlRChHuluR_o_-xvgEec3qg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Chico-Alcudia, Denis R.</creator><creator>Portillo-Salgado, Rodrigo</creator><creator>Camacho-Pérez, Enrique</creator><creator>Peralta-Torres, Jorge A.</creator><creator>Angeles-Hernandez, Juan C.</creator><creator>Muñoz-Benitez, Alfonso L.</creator><creator>Lendechy, Víctor Hugo Severino</creator><creator>Gurgel, Antonio Leandro Chaves</creator><creator>dos Santos Difante, Gelson</creator><creator>Ítavo, Luís Carlos Vinhas</creator><creator>Chay-Canul, Alfonso J.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5911-369X</orcidid></search><sort><creationdate>20221001</creationdate><title>Models to predict live weight from heart girth in crossbred beef heifers</title><author>Chico-Alcudia, Denis R. ; Portillo-Salgado, Rodrigo ; Camacho-Pérez, Enrique ; Peralta-Torres, Jorge A. ; Angeles-Hernandez, Juan C. ; Muñoz-Benitez, Alfonso L. ; Lendechy, Víctor Hugo Severino ; Gurgel, Antonio Leandro Chaves ; dos Santos Difante, Gelson ; Ítavo, Luís Carlos Vinhas ; Chay-Canul, Alfonso J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-123a5f7e222077e5a93f6d6412b6c47ecd70f3fe7452c60b7f732f290e5846183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Bayesian analysis</topic><topic>Beef</topic><topic>Biomedical and Life Sciences</topic><topic>Biometrics</topic><topic>Cattle</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Criteria</topic><topic>Farms</topic><topic>Goodness of fit</topic><topic>Heart</topic><topic>Life Sciences</topic><topic>Livestock</topic><topic>Mathematical models</topic><topic>Performance prediction</topic><topic>Prediction models</topic><topic>Regular Articles</topic><topic>Root-mean-square errors</topic><topic>Veterinary Medicine/Veterinary Science</topic><topic>Weight</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chico-Alcudia, Denis R.</creatorcontrib><creatorcontrib>Portillo-Salgado, Rodrigo</creatorcontrib><creatorcontrib>Camacho-Pérez, Enrique</creatorcontrib><creatorcontrib>Peralta-Torres, Jorge A.</creatorcontrib><creatorcontrib>Angeles-Hernandez, Juan C.</creatorcontrib><creatorcontrib>Muñoz-Benitez, Alfonso L.</creatorcontrib><creatorcontrib>Lendechy, Víctor Hugo Severino</creatorcontrib><creatorcontrib>Gurgel, Antonio Leandro Chaves</creatorcontrib><creatorcontrib>dos Santos Difante, Gelson</creatorcontrib><creatorcontrib>Ítavo, Luís Carlos Vinhas</creatorcontrib><creatorcontrib>Chay-Canul, Alfonso J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Tropical animal health and production</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chico-Alcudia, Denis R.</au><au>Portillo-Salgado, Rodrigo</au><au>Camacho-Pérez, Enrique</au><au>Peralta-Torres, Jorge A.</au><au>Angeles-Hernandez, Juan C.</au><au>Muñoz-Benitez, Alfonso L.</au><au>Lendechy, Víctor Hugo Severino</au><au>Gurgel, Antonio Leandro Chaves</au><au>dos Santos Difante, Gelson</au><au>Ítavo, Luís Carlos Vinhas</au><au>Chay-Canul, Alfonso J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Models to predict live weight from heart girth in crossbred beef heifers</atitle><jtitle>Tropical animal health and production</jtitle><stitle>Trop Anim Health Prod</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>54</volume><issue>5</issue><spage>275</spage><epage>275</epage><pages>275-275</pages><artnum>275</artnum><issn>0049-4747</issn><eissn>1573-7438</eissn><abstract>The objective of this study was to develop and evaluate linear, quadratic, and exponential mathematical models to predict live weight (LW) from heart girth (HG) in crossbred heifers raised in tropical humid conditions in Mexico. Live weight (363.32 ± 150.88 kg) and HG (166.83 ± 24.88 cm) were measured in 400 heifers aged between 3 and 24 months. Linear and non-linear regression was used to construct the prediction models. The goodness of fit of the models was evaluated using the Akaike information criterion (AIC), the Bayesian information criterion (BIC), coefficient of determination ( R 2 ), mean squared error (MSE), and root MSE (RMSE). In addition, the developed models were evaluated through internal and external cross-validation ( k -folds) using independent data. The ability of the fitted models to predict the observed values was evaluated based on the root mean square error of prediction (RMSEP), R 2 , and mean absolute error (MAE). The correlation coefficient between LW and HG was r  = 0.98 ( P  &lt; 0.001). The quadratic model showed the lowest values of MAE (736.57), RMSEP (27.13), AIC (3783.95), and BIC (3799.91). Additionally, this model exhibited better goodness-of-fit values regarding external and internal validation criteria (higher R 2 and lower RMSEP and MAE), thus having better predictive performance. The RMSE represented about 8% of the observed LW. Heart girth is highly correlated ( r  = 0.98) with LW. The quadratic model showed a high predictive capacity for crossbred heifers kept in tropical conditions.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11250-022-03276-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5911-369X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0049-4747
ispartof Tropical animal health and production, 2022-10, Vol.54 (5), p.275-275, Article 275
issn 0049-4747
1573-7438
language eng
recordid cdi_proquest_miscellaneous_2711307639
source Springer Link
subjects Animals
Bayesian analysis
Beef
Biomedical and Life Sciences
Biometrics
Cattle
Correlation coefficient
Correlation coefficients
Criteria
Farms
Goodness of fit
Heart
Life Sciences
Livestock
Mathematical models
Performance prediction
Prediction models
Regular Articles
Root-mean-square errors
Veterinary Medicine/Veterinary Science
Weight
Zoology
title Models to predict live weight from heart girth in crossbred beef heifers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Models%20to%20predict%20live%20weight%20from%20heart%20girth%20in%20crossbred%20beef%20heifers&rft.jtitle=Tropical%20animal%20health%20and%20production&rft.au=Chico-Alcudia,%20Denis%20R.&rft.date=2022-10-01&rft.volume=54&rft.issue=5&rft.spage=275&rft.epage=275&rft.pages=275-275&rft.artnum=275&rft.issn=0049-4747&rft.eissn=1573-7438&rft_id=info:doi/10.1007/s11250-022-03276-7&rft_dat=%3Cproquest_cross%3E2711093399%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-123a5f7e222077e5a93f6d6412b6c47ecd70f3fe7452c60b7f732f290e5846183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2711093399&rft_id=info:pmid/&rfr_iscdi=true