Loading…
The Performance of Different Water Models on the Structure and Function of Cytochrome P450 Enzymes
Modeling approaches and modern simulations to investigate the biomolecular structure and function rely on various methods. Since water molecules play a crucial role in all sorts of chemistry, the accurate modeling of water molecules is vital for such simulations. In cytochrome P450 (CYP450), in part...
Saved in:
Published in: | Journal of chemical information and modeling 2022-12, Vol.62 (24), p.6679-6690 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a364t-d25fe952c2eaa84f79d3357c887de8399f93895518aeac25d0a223b658fd50263 |
---|---|
cites | cdi_FETCH-LOGICAL-a364t-d25fe952c2eaa84f79d3357c887de8399f93895518aeac25d0a223b658fd50263 |
container_end_page | 6690 |
container_issue | 24 |
container_start_page | 6679 |
container_title | Journal of chemical information and modeling |
container_volume | 62 |
creator | Yadav, Shalini Kardam, Vandana Tripathi, Ankita T G, Shruti Dubey, Kshatresh Dutta |
description | Modeling approaches and modern simulations to investigate the biomolecular structure and function rely on various methods. Since water molecules play a crucial role in all sorts of chemistry, the accurate modeling of water molecules is vital for such simulations. In cytochrome P450 (CYP450), in particular, water molecules play a key role in forming active oxidant that ultimately performs oxidation and metabolism. In the present study, we have highlighted the behavior of the three most widely used water modelsTIP3P, SPC/E, and OPCfor three different CYP450 enzymesCYP450BM3, CYP450OleT, and CYP450BSβduring MD simulations and QM/MM calculations. We studied the various properties, such as RMSD, RMSF, H-bond, water occupancy, and hydrogen atom transfer (HAT), using QM/MM calculations and compared them for all three water models. Our study shows that the stabilities of the enzyme complexes are well maintained in all three water models. However, the OPC water model performs well for the polar active sites, that is, in CYP450OleT and CYP450BSβ, while the TIP3P water model is superior for the hydrophobic site, such as CYP450BM3. |
doi_str_mv | 10.1021/acs.jcim.2c00505 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2711844454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759060960</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-d25fe952c2eaa84f79d3357c887de8399f93895518aeac25d0a223b658fd50263</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMotlb3riTgxoWt-ZjMTJZSWxUqClZ0N6SZFzqlM6lJZlF_valtXQiu8iDn3vc4CJ1TMqCE0Rul_WChq3rANCGCiAPUpSKRfZmSj8P9LGTaQSfeLwjhXKbsGHV4SjIuM9pFs-kc8As4Y12tGg3YGnxXGQMOmoDfVQCHn2wJS49tg0OEX4NrdWgdYNWUeNw2OlTxK-aG62D13Nk6NiaC4FHzta7Bn6Ijo5YeznZvD72NR9PhQ3_yfP84vJ30FU-T0C-ZMCAF0wyUyhOTyZJzkek8z0rIuZRG8lwKQXMFSjNREsUYn6UiN6UgLOU9dLXtXTn72YIPRV15DculasC2vmAZpXmSJCKJ6OUfdGFb18TrIiUkSUk0GCmypbSz3jswxcpVtXLrgpJi47-I_ouN_2LnP0YudsXtrIbyN7AXHoHrLfAT3S_9t-8bgKaP4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759060960</pqid></control><display><type>article</type><title>The Performance of Different Water Models on the Structure and Function of Cytochrome P450 Enzymes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Yadav, Shalini ; Kardam, Vandana ; Tripathi, Ankita ; T G, Shruti ; Dubey, Kshatresh Dutta</creator><creatorcontrib>Yadav, Shalini ; Kardam, Vandana ; Tripathi, Ankita ; T G, Shruti ; Dubey, Kshatresh Dutta</creatorcontrib><description>Modeling approaches and modern simulations to investigate the biomolecular structure and function rely on various methods. Since water molecules play a crucial role in all sorts of chemistry, the accurate modeling of water molecules is vital for such simulations. In cytochrome P450 (CYP450), in particular, water molecules play a key role in forming active oxidant that ultimately performs oxidation and metabolism. In the present study, we have highlighted the behavior of the three most widely used water modelsTIP3P, SPC/E, and OPCfor three different CYP450 enzymesCYP450BM3, CYP450OleT, and CYP450BSβduring MD simulations and QM/MM calculations. We studied the various properties, such as RMSD, RMSF, H-bond, water occupancy, and hydrogen atom transfer (HAT), using QM/MM calculations and compared them for all three water models. Our study shows that the stabilities of the enzyme complexes are well maintained in all three water models. However, the OPC water model performs well for the polar active sites, that is, in CYP450OleT and CYP450BSβ, while the TIP3P water model is superior for the hydrophobic site, such as CYP450BM3.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.2c00505</identifier><identifier>PMID: 36073971</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalytic Domain ; Computational Biochemistry ; Cytochrome ; Cytochrome P-450 Enzyme System - metabolism ; Cytochromes P450 ; Enzymes ; Fluid dynamics ; Hydrogen atoms ; Modelling ; Oxidation ; Oxidation-Reduction ; Oxidizing agents ; Physical simulation ; Simulation ; Water - chemistry</subject><ispartof>Journal of chemical information and modeling, 2022-12, Vol.62 (24), p.6679-6690</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 26, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-d25fe952c2eaa84f79d3357c887de8399f93895518aeac25d0a223b658fd50263</citedby><cites>FETCH-LOGICAL-a364t-d25fe952c2eaa84f79d3357c887de8399f93895518aeac25d0a223b658fd50263</cites><orcidid>0000-0001-8865-7602 ; 0000-0002-6176-4747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36073971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yadav, Shalini</creatorcontrib><creatorcontrib>Kardam, Vandana</creatorcontrib><creatorcontrib>Tripathi, Ankita</creatorcontrib><creatorcontrib>T G, Shruti</creatorcontrib><creatorcontrib>Dubey, Kshatresh Dutta</creatorcontrib><title>The Performance of Different Water Models on the Structure and Function of Cytochrome P450 Enzymes</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Modeling approaches and modern simulations to investigate the biomolecular structure and function rely on various methods. Since water molecules play a crucial role in all sorts of chemistry, the accurate modeling of water molecules is vital for such simulations. In cytochrome P450 (CYP450), in particular, water molecules play a key role in forming active oxidant that ultimately performs oxidation and metabolism. In the present study, we have highlighted the behavior of the three most widely used water modelsTIP3P, SPC/E, and OPCfor three different CYP450 enzymesCYP450BM3, CYP450OleT, and CYP450BSβduring MD simulations and QM/MM calculations. We studied the various properties, such as RMSD, RMSF, H-bond, water occupancy, and hydrogen atom transfer (HAT), using QM/MM calculations and compared them for all three water models. Our study shows that the stabilities of the enzyme complexes are well maintained in all three water models. However, the OPC water model performs well for the polar active sites, that is, in CYP450OleT and CYP450BSβ, while the TIP3P water model is superior for the hydrophobic site, such as CYP450BM3.</description><subject>Catalytic Domain</subject><subject>Computational Biochemistry</subject><subject>Cytochrome</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Cytochromes P450</subject><subject>Enzymes</subject><subject>Fluid dynamics</subject><subject>Hydrogen atoms</subject><subject>Modelling</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidizing agents</subject><subject>Physical simulation</subject><subject>Simulation</subject><subject>Water - chemistry</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMotlb3riTgxoWt-ZjMTJZSWxUqClZ0N6SZFzqlM6lJZlF_valtXQiu8iDn3vc4CJ1TMqCE0Rul_WChq3rANCGCiAPUpSKRfZmSj8P9LGTaQSfeLwjhXKbsGHV4SjIuM9pFs-kc8As4Y12tGg3YGnxXGQMOmoDfVQCHn2wJS49tg0OEX4NrdWgdYNWUeNw2OlTxK-aG62D13Nk6NiaC4FHzta7Bn6Ijo5YeznZvD72NR9PhQ3_yfP84vJ30FU-T0C-ZMCAF0wyUyhOTyZJzkek8z0rIuZRG8lwKQXMFSjNREsUYn6UiN6UgLOU9dLXtXTn72YIPRV15DculasC2vmAZpXmSJCKJ6OUfdGFb18TrIiUkSUk0GCmypbSz3jswxcpVtXLrgpJi47-I_ouN_2LnP0YudsXtrIbyN7AXHoHrLfAT3S_9t-8bgKaP4w</recordid><startdate>20221226</startdate><enddate>20221226</enddate><creator>Yadav, Shalini</creator><creator>Kardam, Vandana</creator><creator>Tripathi, Ankita</creator><creator>T G, Shruti</creator><creator>Dubey, Kshatresh Dutta</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8865-7602</orcidid><orcidid>https://orcid.org/0000-0002-6176-4747</orcidid></search><sort><creationdate>20221226</creationdate><title>The Performance of Different Water Models on the Structure and Function of Cytochrome P450 Enzymes</title><author>Yadav, Shalini ; Kardam, Vandana ; Tripathi, Ankita ; T G, Shruti ; Dubey, Kshatresh Dutta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-d25fe952c2eaa84f79d3357c887de8399f93895518aeac25d0a223b658fd50263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalytic Domain</topic><topic>Computational Biochemistry</topic><topic>Cytochrome</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Cytochromes P450</topic><topic>Enzymes</topic><topic>Fluid dynamics</topic><topic>Hydrogen atoms</topic><topic>Modelling</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidizing agents</topic><topic>Physical simulation</topic><topic>Simulation</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Shalini</creatorcontrib><creatorcontrib>Kardam, Vandana</creatorcontrib><creatorcontrib>Tripathi, Ankita</creatorcontrib><creatorcontrib>T G, Shruti</creatorcontrib><creatorcontrib>Dubey, Kshatresh Dutta</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Shalini</au><au>Kardam, Vandana</au><au>Tripathi, Ankita</au><au>T G, Shruti</au><au>Dubey, Kshatresh Dutta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Performance of Different Water Models on the Structure and Function of Cytochrome P450 Enzymes</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2022-12-26</date><risdate>2022</risdate><volume>62</volume><issue>24</issue><spage>6679</spage><epage>6690</epage><pages>6679-6690</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Modeling approaches and modern simulations to investigate the biomolecular structure and function rely on various methods. Since water molecules play a crucial role in all sorts of chemistry, the accurate modeling of water molecules is vital for such simulations. In cytochrome P450 (CYP450), in particular, water molecules play a key role in forming active oxidant that ultimately performs oxidation and metabolism. In the present study, we have highlighted the behavior of the three most widely used water modelsTIP3P, SPC/E, and OPCfor three different CYP450 enzymesCYP450BM3, CYP450OleT, and CYP450BSβduring MD simulations and QM/MM calculations. We studied the various properties, such as RMSD, RMSF, H-bond, water occupancy, and hydrogen atom transfer (HAT), using QM/MM calculations and compared them for all three water models. Our study shows that the stabilities of the enzyme complexes are well maintained in all three water models. However, the OPC water model performs well for the polar active sites, that is, in CYP450OleT and CYP450BSβ, while the TIP3P water model is superior for the hydrophobic site, such as CYP450BM3.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36073971</pmid><doi>10.1021/acs.jcim.2c00505</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8865-7602</orcidid><orcidid>https://orcid.org/0000-0002-6176-4747</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2022-12, Vol.62 (24), p.6679-6690 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2711844454 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Catalytic Domain Computational Biochemistry Cytochrome Cytochrome P-450 Enzyme System - metabolism Cytochromes P450 Enzymes Fluid dynamics Hydrogen atoms Modelling Oxidation Oxidation-Reduction Oxidizing agents Physical simulation Simulation Water - chemistry |
title | The Performance of Different Water Models on the Structure and Function of Cytochrome P450 Enzymes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Performance%20of%20Different%20Water%20Models%20on%20the%20Structure%20and%20Function%20of%20Cytochrome%20P450%20Enzymes&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Yadav,%20Shalini&rft.date=2022-12-26&rft.volume=62&rft.issue=24&rft.spage=6679&rft.epage=6690&rft.pages=6679-6690&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.2c00505&rft_dat=%3Cproquest_cross%3E2759060960%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a364t-d25fe952c2eaa84f79d3357c887de8399f93895518aeac25d0a223b658fd50263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2759060960&rft_id=info:pmid/36073971&rfr_iscdi=true |