Loading…

The Performance of Different Water Models on the Structure and Function of Cytochrome P450 Enzymes

Modeling approaches and modern simulations to investigate the biomolecular structure and function rely on various methods. Since water molecules play a crucial role in all sorts of chemistry, the accurate modeling of water molecules is vital for such simulations. In cytochrome P450 (CYP450), in part...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical information and modeling 2022-12, Vol.62 (24), p.6679-6690
Main Authors: Yadav, Shalini, Kardam, Vandana, Tripathi, Ankita, T G, Shruti, Dubey, Kshatresh Dutta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a364t-d25fe952c2eaa84f79d3357c887de8399f93895518aeac25d0a223b658fd50263
cites cdi_FETCH-LOGICAL-a364t-d25fe952c2eaa84f79d3357c887de8399f93895518aeac25d0a223b658fd50263
container_end_page 6690
container_issue 24
container_start_page 6679
container_title Journal of chemical information and modeling
container_volume 62
creator Yadav, Shalini
Kardam, Vandana
Tripathi, Ankita
T G, Shruti
Dubey, Kshatresh Dutta
description Modeling approaches and modern simulations to investigate the biomolecular structure and function rely on various methods. Since water molecules play a crucial role in all sorts of chemistry, the accurate modeling of water molecules is vital for such simulations. In cytochrome P450 (CYP450), in particular, water molecules play a key role in forming active oxidant that ultimately performs oxidation and metabolism. In the present study, we have highlighted the behavior of the three most widely used water modelsTIP3P, SPC/E, and OPCfor three different CYP450 enzymesCYP450BM3, CYP450OleT, and CYP450BSβduring MD simulations and QM/MM calculations. We studied the various properties, such as RMSD, RMSF, H-bond, water occupancy, and hydrogen atom transfer (HAT), using QM/MM calculations and compared them for all three water models. Our study shows that the stabilities of the enzyme complexes are well maintained in all three water models. However, the OPC water model performs well for the polar active sites, that is, in CYP450OleT and CYP450BSβ, while the TIP3P water model is superior for the hydrophobic site, such as CYP450BM3.
doi_str_mv 10.1021/acs.jcim.2c00505
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2711844454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759060960</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-d25fe952c2eaa84f79d3357c887de8399f93895518aeac25d0a223b658fd50263</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMotlb3riTgxoWt-ZjMTJZSWxUqClZ0N6SZFzqlM6lJZlF_valtXQiu8iDn3vc4CJ1TMqCE0Rul_WChq3rANCGCiAPUpSKRfZmSj8P9LGTaQSfeLwjhXKbsGHV4SjIuM9pFs-kc8As4Y12tGg3YGnxXGQMOmoDfVQCHn2wJS49tg0OEX4NrdWgdYNWUeNw2OlTxK-aG62D13Nk6NiaC4FHzta7Bn6Ijo5YeznZvD72NR9PhQ3_yfP84vJ30FU-T0C-ZMCAF0wyUyhOTyZJzkek8z0rIuZRG8lwKQXMFSjNREsUYn6UiN6UgLOU9dLXtXTn72YIPRV15DculasC2vmAZpXmSJCKJ6OUfdGFb18TrIiUkSUk0GCmypbSz3jswxcpVtXLrgpJi47-I_ouN_2LnP0YudsXtrIbyN7AXHoHrLfAT3S_9t-8bgKaP4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759060960</pqid></control><display><type>article</type><title>The Performance of Different Water Models on the Structure and Function of Cytochrome P450 Enzymes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Yadav, Shalini ; Kardam, Vandana ; Tripathi, Ankita ; T G, Shruti ; Dubey, Kshatresh Dutta</creator><creatorcontrib>Yadav, Shalini ; Kardam, Vandana ; Tripathi, Ankita ; T G, Shruti ; Dubey, Kshatresh Dutta</creatorcontrib><description>Modeling approaches and modern simulations to investigate the biomolecular structure and function rely on various methods. Since water molecules play a crucial role in all sorts of chemistry, the accurate modeling of water molecules is vital for such simulations. In cytochrome P450 (CYP450), in particular, water molecules play a key role in forming active oxidant that ultimately performs oxidation and metabolism. In the present study, we have highlighted the behavior of the three most widely used water modelsTIP3P, SPC/E, and OPCfor three different CYP450 enzymesCYP450BM3, CYP450OleT, and CYP450BSβduring MD simulations and QM/MM calculations. We studied the various properties, such as RMSD, RMSF, H-bond, water occupancy, and hydrogen atom transfer (HAT), using QM/MM calculations and compared them for all three water models. Our study shows that the stabilities of the enzyme complexes are well maintained in all three water models. However, the OPC water model performs well for the polar active sites, that is, in CYP450OleT and CYP450BSβ, while the TIP3P water model is superior for the hydrophobic site, such as CYP450BM3.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.2c00505</identifier><identifier>PMID: 36073971</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalytic Domain ; Computational Biochemistry ; Cytochrome ; Cytochrome P-450 Enzyme System - metabolism ; Cytochromes P450 ; Enzymes ; Fluid dynamics ; Hydrogen atoms ; Modelling ; Oxidation ; Oxidation-Reduction ; Oxidizing agents ; Physical simulation ; Simulation ; Water - chemistry</subject><ispartof>Journal of chemical information and modeling, 2022-12, Vol.62 (24), p.6679-6690</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 26, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-d25fe952c2eaa84f79d3357c887de8399f93895518aeac25d0a223b658fd50263</citedby><cites>FETCH-LOGICAL-a364t-d25fe952c2eaa84f79d3357c887de8399f93895518aeac25d0a223b658fd50263</cites><orcidid>0000-0001-8865-7602 ; 0000-0002-6176-4747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36073971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yadav, Shalini</creatorcontrib><creatorcontrib>Kardam, Vandana</creatorcontrib><creatorcontrib>Tripathi, Ankita</creatorcontrib><creatorcontrib>T G, Shruti</creatorcontrib><creatorcontrib>Dubey, Kshatresh Dutta</creatorcontrib><title>The Performance of Different Water Models on the Structure and Function of Cytochrome P450 Enzymes</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Modeling approaches and modern simulations to investigate the biomolecular structure and function rely on various methods. Since water molecules play a crucial role in all sorts of chemistry, the accurate modeling of water molecules is vital for such simulations. In cytochrome P450 (CYP450), in particular, water molecules play a key role in forming active oxidant that ultimately performs oxidation and metabolism. In the present study, we have highlighted the behavior of the three most widely used water modelsTIP3P, SPC/E, and OPCfor three different CYP450 enzymesCYP450BM3, CYP450OleT, and CYP450BSβduring MD simulations and QM/MM calculations. We studied the various properties, such as RMSD, RMSF, H-bond, water occupancy, and hydrogen atom transfer (HAT), using QM/MM calculations and compared them for all three water models. Our study shows that the stabilities of the enzyme complexes are well maintained in all three water models. However, the OPC water model performs well for the polar active sites, that is, in CYP450OleT and CYP450BSβ, while the TIP3P water model is superior for the hydrophobic site, such as CYP450BM3.</description><subject>Catalytic Domain</subject><subject>Computational Biochemistry</subject><subject>Cytochrome</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Cytochromes P450</subject><subject>Enzymes</subject><subject>Fluid dynamics</subject><subject>Hydrogen atoms</subject><subject>Modelling</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidizing agents</subject><subject>Physical simulation</subject><subject>Simulation</subject><subject>Water - chemistry</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMotlb3riTgxoWt-ZjMTJZSWxUqClZ0N6SZFzqlM6lJZlF_valtXQiu8iDn3vc4CJ1TMqCE0Rul_WChq3rANCGCiAPUpSKRfZmSj8P9LGTaQSfeLwjhXKbsGHV4SjIuM9pFs-kc8As4Y12tGg3YGnxXGQMOmoDfVQCHn2wJS49tg0OEX4NrdWgdYNWUeNw2OlTxK-aG62D13Nk6NiaC4FHzta7Bn6Ijo5YeznZvD72NR9PhQ3_yfP84vJ30FU-T0C-ZMCAF0wyUyhOTyZJzkek8z0rIuZRG8lwKQXMFSjNREsUYn6UiN6UgLOU9dLXtXTn72YIPRV15DculasC2vmAZpXmSJCKJ6OUfdGFb18TrIiUkSUk0GCmypbSz3jswxcpVtXLrgpJi47-I_ouN_2LnP0YudsXtrIbyN7AXHoHrLfAT3S_9t-8bgKaP4w</recordid><startdate>20221226</startdate><enddate>20221226</enddate><creator>Yadav, Shalini</creator><creator>Kardam, Vandana</creator><creator>Tripathi, Ankita</creator><creator>T G, Shruti</creator><creator>Dubey, Kshatresh Dutta</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8865-7602</orcidid><orcidid>https://orcid.org/0000-0002-6176-4747</orcidid></search><sort><creationdate>20221226</creationdate><title>The Performance of Different Water Models on the Structure and Function of Cytochrome P450 Enzymes</title><author>Yadav, Shalini ; Kardam, Vandana ; Tripathi, Ankita ; T G, Shruti ; Dubey, Kshatresh Dutta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-d25fe952c2eaa84f79d3357c887de8399f93895518aeac25d0a223b658fd50263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalytic Domain</topic><topic>Computational Biochemistry</topic><topic>Cytochrome</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Cytochromes P450</topic><topic>Enzymes</topic><topic>Fluid dynamics</topic><topic>Hydrogen atoms</topic><topic>Modelling</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidizing agents</topic><topic>Physical simulation</topic><topic>Simulation</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Shalini</creatorcontrib><creatorcontrib>Kardam, Vandana</creatorcontrib><creatorcontrib>Tripathi, Ankita</creatorcontrib><creatorcontrib>T G, Shruti</creatorcontrib><creatorcontrib>Dubey, Kshatresh Dutta</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Shalini</au><au>Kardam, Vandana</au><au>Tripathi, Ankita</au><au>T G, Shruti</au><au>Dubey, Kshatresh Dutta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Performance of Different Water Models on the Structure and Function of Cytochrome P450 Enzymes</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2022-12-26</date><risdate>2022</risdate><volume>62</volume><issue>24</issue><spage>6679</spage><epage>6690</epage><pages>6679-6690</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Modeling approaches and modern simulations to investigate the biomolecular structure and function rely on various methods. Since water molecules play a crucial role in all sorts of chemistry, the accurate modeling of water molecules is vital for such simulations. In cytochrome P450 (CYP450), in particular, water molecules play a key role in forming active oxidant that ultimately performs oxidation and metabolism. In the present study, we have highlighted the behavior of the three most widely used water modelsTIP3P, SPC/E, and OPCfor three different CYP450 enzymesCYP450BM3, CYP450OleT, and CYP450BSβduring MD simulations and QM/MM calculations. We studied the various properties, such as RMSD, RMSF, H-bond, water occupancy, and hydrogen atom transfer (HAT), using QM/MM calculations and compared them for all three water models. Our study shows that the stabilities of the enzyme complexes are well maintained in all three water models. However, the OPC water model performs well for the polar active sites, that is, in CYP450OleT and CYP450BSβ, while the TIP3P water model is superior for the hydrophobic site, such as CYP450BM3.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36073971</pmid><doi>10.1021/acs.jcim.2c00505</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8865-7602</orcidid><orcidid>https://orcid.org/0000-0002-6176-4747</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2022-12, Vol.62 (24), p.6679-6690
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_2711844454
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Catalytic Domain
Computational Biochemistry
Cytochrome
Cytochrome P-450 Enzyme System - metabolism
Cytochromes P450
Enzymes
Fluid dynamics
Hydrogen atoms
Modelling
Oxidation
Oxidation-Reduction
Oxidizing agents
Physical simulation
Simulation
Water - chemistry
title The Performance of Different Water Models on the Structure and Function of Cytochrome P450 Enzymes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Performance%20of%20Different%20Water%20Models%20on%20the%20Structure%20and%20Function%20of%20Cytochrome%20P450%20Enzymes&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Yadav,%20Shalini&rft.date=2022-12-26&rft.volume=62&rft.issue=24&rft.spage=6679&rft.epage=6690&rft.pages=6679-6690&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.2c00505&rft_dat=%3Cproquest_cross%3E2759060960%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a364t-d25fe952c2eaa84f79d3357c887de8399f93895518aeac25d0a223b658fd50263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2759060960&rft_id=info:pmid/36073971&rfr_iscdi=true