Loading…
PePYL4 enhances drought tolerance by modulating water-use efficiency and ROS scavenging in Populus
Drought is one of the major limiting factors in the growth of terrestrial plants. Abscisic acid (ABA) and pyrabactin resistance 1/prabactin resistance-1 like/regulatory components of ABA receptors (PYR/PYL/RCARs) play a key role in response to drought stress. However, the underlying mechanisms of th...
Saved in:
Published in: | Tree physiology 2023-01, Vol.43 (1), p.102-117 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Drought is one of the major limiting factors in the growth of terrestrial plants. Abscisic acid (ABA) and pyrabactin resistance 1/prabactin resistance-1 like/regulatory components of ABA receptors (PYR/PYL/RCARs) play a key role in response to drought stress. However, the underlying mechanisms of this control remain largely elusive in trees. In this study, PePYL4, a potential ortholog of the PYR/PYL/RCARs gene, was cloned from Populus euphratica. It was localized in the cytoplasm and nucleus, induced by ABA, osmotic and dehydration treatments. To study the potential biological functions of PePYL4, transgenic triploid white poplars (Populus tomentosa 'YiXianCiZhu B38') overexpressing PePYL4 were generated. PePYL4 overexpression significantly increased ABA sensitivity and reduced stomatal aperture. Compared with wild-type plants, transgenic plants had higher water-use efficiency (WUE) and lower transpiration. When exposed to drought stress, PePYL4 overexpression plants maintained higher photosynthetic activity and accumulated more biomass. Moreover, overexpression of PePYL4 improved antioxidant enzyme activity and ascorbate content to accelerate reactive oxygen species scavenging. Meanwhile, upregulation expression of the stress-related genes also contributed to improving the drought tolerance of transgenic plants. In conclusion, our data suggest that PePYL4 is a promising gene target for regulating WUE and drought tolerance in Populus. |
---|---|
ISSN: | 1758-4469 1758-4469 |
DOI: | 10.1093/treephys/tpac106 |