Loading…
Aptasensor for Detection of Influenza-A in Human Saliva
Access to low-cost, rapid, individualized diagnostics at point-of-care and point-of-need is vital to minimize the impact of highly infectious viruses, such as influenza. Herein, a biosensor for detecting hemagglutinin (HA), an abundant capsid protein in H1N1 viruses, is demonstrated. A gold working...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Access to low-cost, rapid, individualized diagnostics at point-of-care and point-of-need is vital to minimize the impact of highly infectious viruses, such as influenza. Herein, a biosensor for detecting hemagglutinin (HA), an abundant capsid protein in H1N1 viruses, is demonstrated. A gold working electrode was functionalized with a thiol-modified, HA-binding aptamer derivatized with a methylene blue modification for redox reporting. The aptamer was characterized by surface plasmon resonance to confirm its biorecognition activity for HA. The aptasensor was characterized by square wave voltammetry to quantify the sensor's response to varying concentrations of HA. The sensor exhibited a lower limit of detection of 1.5 pM with linear detection of up to 1.2 nM in both Tris buffer and simulated human saliva, thus encompassing the clinically relevant HA range in saliva. Average sensitivity was measured at 21.083 nA·nM- 1 in Tris and 14.5 nA·nM- 1 in artificial saliva across clinically relevant HA titers. Sensor stability across time was also investigated, providing a preliminary understanding of the translational viability of the aptasensors for mobile and remote diagnostic applications. |
---|---|
ISSN: | 2694-0604 |
DOI: | 10.1109/EMBC48229.2022.9871837 |