Loading…
Spectroscopic identification of a galaxy at a probable redshift of z = 6.68
The detection and identification of distant galaxies is an important goal of observational cosmology, as such galaxies are seen at a time when the Universe was very young. The development of new techniques and instrumentation permits the search for ever-fainter galaxies, and so aids attempts to dete...
Saved in:
Published in: | Nature (London) 1999-04, Vol.398 (6728), p.586-588 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The detection and identification of distant galaxies is an important goal of observational cosmology, as such galaxies are seen at a time when the Universe was very young. The development of new techniques and instrumentation permits the search for ever-fainter galaxies, and so aids attempts to determine when the first stars and galaxies formed. Here we report the identification of a galaxy at a probable redshift of 6.68, the most distant object yet detected. The galaxy's spectrum is characterized by an abrupt discontinuity at a wavelength λ 9,300 Å, which we interpret as arising from the absorption of light at shorter wavelengths by hydrogen gas along the line of sight (the Lyman-α decrement), and by an emission line at λ 9,334 Å, which we interpret as the Lyman-α line at a redshift of 6.68. The galaxy is relatively bright: the ultraviolet luminosity density contributed by this one galaxy is almost ten times the value measured at z = 3. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/19251 |