Loading…
Antibacterial Conductive UV-Blocking Adhesion Hydrogel Dressing with Mild On-Demand Removability Accelerated Drug-Resistant Bacteria-Infected Wound Healing
The on-demand replacement of multifunctional hydrogel wound dressings helps to avoid bacterial colonization, and the on-demand painless peeling of tissue adhesive hydrogels on the wound site remains a major challenge to be solved. In this work, we design and develop a series of multifunctional dynam...
Saved in:
Published in: | ACS applied materials & interfaces 2022-09, Vol.14 (37), p.41726-41741 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The on-demand replacement of multifunctional hydrogel wound dressings helps to avoid bacterial colonization, and the on-demand painless peeling of tissue adhesive hydrogels on the wound site remains a major challenge to be solved. In this work, we design and develop a series of multifunctional dynamic Schiff base network hydrogels composed of cystamine-modified hyaluronic acid, benzaldehyde-functionalized poly(ethylene glycol)-co-poly(glycerol sebacate), and polydopamine@polypyrrole nanocomposite (PDA@PPy) with mild on-demand removability to enhance drug-resistant bacteria-infected wound healing. These hydrogels exhibited ideal injectable and self-healing properties, excellent tissue adhesion, in vivo hemostasis, good antioxidation, and conductivity. PDA@PPy inspired by melanin endows hydrogels with excellent antioxidant capacity, UV-blocking ability, and photothermal anti-infection ability. Based on the dynamic oxidation–reduction response of disulfide bonds inspired by the dissociation of the tertiary spatial structure transformation of poly-polypeptide chains, these hydrogels can achieve rapid painless on-demand removal under mild conditions by adding dithiothreitol. These multifunctional hydrogels significantly promoted collagen deposition and angiogenesis in the MRSA-infected full-thickness skin repair experiment. All the results showed that these multifunctional hydrogels with painless on-demand removal property showed great potential in clinical treatment of infected wounds. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.2c10490 |