Loading…
Efficiency Analysis and Ranking of DMUs with Fuzzy Data
In this paper, a fuzzy version of CCR model (Charnes, Cooper and Rhodes (1978)) with asymmetrical triangular fuzzy number is presented and a procedure is suggested for its solution. The basic idea is to transform the fuzzy CCR model into a crisp linear programming problem by applying an alternative...
Saved in:
Published in: | Fuzzy optimization and decision making 2002-08, Vol.1 (3), p.255-267 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c218t-4553bbc7bc5c69afe9ca67c622b65f9e0f8d4932f7551bbea656be4805f4a5fe3 |
---|---|
cites | |
container_end_page | 267 |
container_issue | 3 |
container_start_page | 255 |
container_title | Fuzzy optimization and decision making |
container_volume | 1 |
creator | Saati M, S Memariani, A Jahanshahloo, G R |
description | In this paper, a fuzzy version of CCR model (Charnes, Cooper and Rhodes (1978)) with asymmetrical triangular fuzzy number is presented and a procedure is suggested for its solution. The basic idea is to transform the fuzzy CCR model into a crisp linear programming problem by applying an alternative [alpha]-cut approach. Thereby, the problem is converted to an interval programming. In this method, instead of comparing the equality (or inequality) of two intervals, a variable is defined in the interval, not only satisfies the set of constraints, but also maximizes the efficiency value. We also propose a ranking method for fuzzy DMUs using presented fuzzy DEA approach. To demonstrate the concept, numerical examples are solved and solutions are compared with Guo and Tanaka (2001). [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1023/A:1019648512614 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_27135261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27135261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-4553bbc7bc5c69afe9ca67c622b65f9e0f8d4932f7551bbea656be4805f4a5fe3</originalsourceid><addsrcrecordid>eNpdkLtPwzAYxC0EEqUws1oMbAG_Pj_Yoj4AqQgJ0bmyXRtcQgJ1oir960kFE9Pd8NOd7hC6pOSGEsZvyztKqJFCA2WSiiM0oqB4wQzRxwcvdSGAm1N0lvOGECoZ6BFSsxiTT6H2PS5rW_U5ZWzrNX6x9Ueq33AT8fRpmfEute943u33PZ7a1p6jk2irHC7-dIyW89nr5KFYPN8_TspF4RnV7dAI3DmvnAcvjY3BeCuVl4w5CdEEEvVaGM6iAqDOBStBuiA0gSgsxMDH6Po392vbfHcht6vPlH2oKluHpssrpiiHYe8AXv0DN023HRYNDOOcHX7gP5MMVII</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223322908</pqid></control><display><type>article</type><title>Efficiency Analysis and Ranking of DMUs with Fuzzy Data</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Saati M, S ; Memariani, A ; Jahanshahloo, G R</creator><creatorcontrib>Saati M, S ; Memariani, A ; Jahanshahloo, G R</creatorcontrib><description>In this paper, a fuzzy version of CCR model (Charnes, Cooper and Rhodes (1978)) with asymmetrical triangular fuzzy number is presented and a procedure is suggested for its solution. The basic idea is to transform the fuzzy CCR model into a crisp linear programming problem by applying an alternative [alpha]-cut approach. Thereby, the problem is converted to an interval programming. In this method, instead of comparing the equality (or inequality) of two intervals, a variable is defined in the interval, not only satisfies the set of constraints, but also maximizes the efficiency value. We also propose a ranking method for fuzzy DMUs using presented fuzzy DEA approach. To demonstrate the concept, numerical examples are solved and solutions are compared with Guo and Tanaka (2001). [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1568-4539</identifier><identifier>EISSN: 1573-2908</identifier><identifier>DOI: 10.1023/A:1019648512614</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Data envelopment analysis ; Decision making ; Efficiency ; Fuzzy logic ; Fuzzy sets ; Linear programming ; Mathematical programming ; Mathematics ; Methods</subject><ispartof>Fuzzy optimization and decision making, 2002-08, Vol.1 (3), p.255-267</ispartof><rights>Copyright Kluwer Academic Publishers Aug 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-4553bbc7bc5c69afe9ca67c622b65f9e0f8d4932f7551bbea656be4805f4a5fe3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/223322908/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/223322908?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>Saati M, S</creatorcontrib><creatorcontrib>Memariani, A</creatorcontrib><creatorcontrib>Jahanshahloo, G R</creatorcontrib><title>Efficiency Analysis and Ranking of DMUs with Fuzzy Data</title><title>Fuzzy optimization and decision making</title><description>In this paper, a fuzzy version of CCR model (Charnes, Cooper and Rhodes (1978)) with asymmetrical triangular fuzzy number is presented and a procedure is suggested for its solution. The basic idea is to transform the fuzzy CCR model into a crisp linear programming problem by applying an alternative [alpha]-cut approach. Thereby, the problem is converted to an interval programming. In this method, instead of comparing the equality (or inequality) of two intervals, a variable is defined in the interval, not only satisfies the set of constraints, but also maximizes the efficiency value. We also propose a ranking method for fuzzy DMUs using presented fuzzy DEA approach. To demonstrate the concept, numerical examples are solved and solutions are compared with Guo and Tanaka (2001). [PUBLICATION ABSTRACT]</description><subject>Data envelopment analysis</subject><subject>Decision making</subject><subject>Efficiency</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Linear programming</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Methods</subject><issn>1568-4539</issn><issn>1573-2908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkLtPwzAYxC0EEqUws1oMbAG_Pj_Yoj4AqQgJ0bmyXRtcQgJ1oir960kFE9Pd8NOd7hC6pOSGEsZvyztKqJFCA2WSiiM0oqB4wQzRxwcvdSGAm1N0lvOGECoZ6BFSsxiTT6H2PS5rW_U5ZWzrNX6x9Ueq33AT8fRpmfEute943u33PZ7a1p6jk2irHC7-dIyW89nr5KFYPN8_TspF4RnV7dAI3DmvnAcvjY3BeCuVl4w5CdEEEvVaGM6iAqDOBStBuiA0gSgsxMDH6Po392vbfHcht6vPlH2oKluHpssrpiiHYe8AXv0DN023HRYNDOOcHX7gP5MMVII</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Saati M, S</creator><creator>Memariani, A</creator><creator>Jahanshahloo, G R</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20020801</creationdate><title>Efficiency Analysis and Ranking of DMUs with Fuzzy Data</title><author>Saati M, S ; Memariani, A ; Jahanshahloo, G R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-4553bbc7bc5c69afe9ca67c622b65f9e0f8d4932f7551bbea656be4805f4a5fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Data envelopment analysis</topic><topic>Decision making</topic><topic>Efficiency</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Linear programming</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saati M, S</creatorcontrib><creatorcontrib>Memariani, A</creatorcontrib><creatorcontrib>Jahanshahloo, G R</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Fuzzy optimization and decision making</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saati M, S</au><au>Memariani, A</au><au>Jahanshahloo, G R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficiency Analysis and Ranking of DMUs with Fuzzy Data</atitle><jtitle>Fuzzy optimization and decision making</jtitle><date>2002-08-01</date><risdate>2002</risdate><volume>1</volume><issue>3</issue><spage>255</spage><epage>267</epage><pages>255-267</pages><issn>1568-4539</issn><eissn>1573-2908</eissn><abstract>In this paper, a fuzzy version of CCR model (Charnes, Cooper and Rhodes (1978)) with asymmetrical triangular fuzzy number is presented and a procedure is suggested for its solution. The basic idea is to transform the fuzzy CCR model into a crisp linear programming problem by applying an alternative [alpha]-cut approach. Thereby, the problem is converted to an interval programming. In this method, instead of comparing the equality (or inequality) of two intervals, a variable is defined in the interval, not only satisfies the set of constraints, but also maximizes the efficiency value. We also propose a ranking method for fuzzy DMUs using presented fuzzy DEA approach. To demonstrate the concept, numerical examples are solved and solutions are compared with Guo and Tanaka (2001). [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1019648512614</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1568-4539 |
ispartof | Fuzzy optimization and decision making, 2002-08, Vol.1 (3), p.255-267 |
issn | 1568-4539 1573-2908 |
language | eng |
recordid | cdi_proquest_miscellaneous_27135261 |
source | ABI/INFORM Global; Springer Nature |
subjects | Data envelopment analysis Decision making Efficiency Fuzzy logic Fuzzy sets Linear programming Mathematical programming Mathematics Methods |
title | Efficiency Analysis and Ranking of DMUs with Fuzzy Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficiency%20Analysis%20and%20Ranking%20of%20DMUs%20with%20Fuzzy%20Data&rft.jtitle=Fuzzy%20optimization%20and%20decision%20making&rft.au=Saati%20M,%20S&rft.date=2002-08-01&rft.volume=1&rft.issue=3&rft.spage=255&rft.epage=267&rft.pages=255-267&rft.issn=1568-4539&rft.eissn=1573-2908&rft_id=info:doi/10.1023/A:1019648512614&rft_dat=%3Cproquest%3E27135261%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-4553bbc7bc5c69afe9ca67c622b65f9e0f8d4932f7551bbea656be4805f4a5fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=223322908&rft_id=info:pmid/&rfr_iscdi=true |