Loading…

Efficiency Analysis and Ranking of DMUs with Fuzzy Data

In this paper, a fuzzy version of CCR model (Charnes, Cooper and Rhodes (1978)) with asymmetrical triangular fuzzy number is presented and a procedure is suggested for its solution. The basic idea is to transform the fuzzy CCR model into a crisp linear programming problem by applying an alternative...

Full description

Saved in:
Bibliographic Details
Published in:Fuzzy optimization and decision making 2002-08, Vol.1 (3), p.255-267
Main Authors: Saati M, S, Memariani, A, Jahanshahloo, G R
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c218t-4553bbc7bc5c69afe9ca67c622b65f9e0f8d4932f7551bbea656be4805f4a5fe3
cites
container_end_page 267
container_issue 3
container_start_page 255
container_title Fuzzy optimization and decision making
container_volume 1
creator Saati M, S
Memariani, A
Jahanshahloo, G R
description In this paper, a fuzzy version of CCR model (Charnes, Cooper and Rhodes (1978)) with asymmetrical triangular fuzzy number is presented and a procedure is suggested for its solution. The basic idea is to transform the fuzzy CCR model into a crisp linear programming problem by applying an alternative [alpha]-cut approach. Thereby, the problem is converted to an interval programming. In this method, instead of comparing the equality (or inequality) of two intervals, a variable is defined in the interval, not only satisfies the set of constraints, but also maximizes the efficiency value. We also propose a ranking method for fuzzy DMUs using presented fuzzy DEA approach. To demonstrate the concept, numerical examples are solved and solutions are compared with Guo and Tanaka (2001). [PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1019648512614
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_27135261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27135261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-4553bbc7bc5c69afe9ca67c622b65f9e0f8d4932f7551bbea656be4805f4a5fe3</originalsourceid><addsrcrecordid>eNpdkLtPwzAYxC0EEqUws1oMbAG_Pj_Yoj4AqQgJ0bmyXRtcQgJ1oir960kFE9Pd8NOd7hC6pOSGEsZvyztKqJFCA2WSiiM0oqB4wQzRxwcvdSGAm1N0lvOGECoZ6BFSsxiTT6H2PS5rW_U5ZWzrNX6x9Ueq33AT8fRpmfEute943u33PZ7a1p6jk2irHC7-dIyW89nr5KFYPN8_TspF4RnV7dAI3DmvnAcvjY3BeCuVl4w5CdEEEvVaGM6iAqDOBStBuiA0gSgsxMDH6Po392vbfHcht6vPlH2oKluHpssrpiiHYe8AXv0DN023HRYNDOOcHX7gP5MMVII</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223322908</pqid></control><display><type>article</type><title>Efficiency Analysis and Ranking of DMUs with Fuzzy Data</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Saati M, S ; Memariani, A ; Jahanshahloo, G R</creator><creatorcontrib>Saati M, S ; Memariani, A ; Jahanshahloo, G R</creatorcontrib><description>In this paper, a fuzzy version of CCR model (Charnes, Cooper and Rhodes (1978)) with asymmetrical triangular fuzzy number is presented and a procedure is suggested for its solution. The basic idea is to transform the fuzzy CCR model into a crisp linear programming problem by applying an alternative [alpha]-cut approach. Thereby, the problem is converted to an interval programming. In this method, instead of comparing the equality (or inequality) of two intervals, a variable is defined in the interval, not only satisfies the set of constraints, but also maximizes the efficiency value. We also propose a ranking method for fuzzy DMUs using presented fuzzy DEA approach. To demonstrate the concept, numerical examples are solved and solutions are compared with Guo and Tanaka (2001). [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1568-4539</identifier><identifier>EISSN: 1573-2908</identifier><identifier>DOI: 10.1023/A:1019648512614</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Data envelopment analysis ; Decision making ; Efficiency ; Fuzzy logic ; Fuzzy sets ; Linear programming ; Mathematical programming ; Mathematics ; Methods</subject><ispartof>Fuzzy optimization and decision making, 2002-08, Vol.1 (3), p.255-267</ispartof><rights>Copyright Kluwer Academic Publishers Aug 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-4553bbc7bc5c69afe9ca67c622b65f9e0f8d4932f7551bbea656be4805f4a5fe3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/223322908/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/223322908?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>Saati M, S</creatorcontrib><creatorcontrib>Memariani, A</creatorcontrib><creatorcontrib>Jahanshahloo, G R</creatorcontrib><title>Efficiency Analysis and Ranking of DMUs with Fuzzy Data</title><title>Fuzzy optimization and decision making</title><description>In this paper, a fuzzy version of CCR model (Charnes, Cooper and Rhodes (1978)) with asymmetrical triangular fuzzy number is presented and a procedure is suggested for its solution. The basic idea is to transform the fuzzy CCR model into a crisp linear programming problem by applying an alternative [alpha]-cut approach. Thereby, the problem is converted to an interval programming. In this method, instead of comparing the equality (or inequality) of two intervals, a variable is defined in the interval, not only satisfies the set of constraints, but also maximizes the efficiency value. We also propose a ranking method for fuzzy DMUs using presented fuzzy DEA approach. To demonstrate the concept, numerical examples are solved and solutions are compared with Guo and Tanaka (2001). [PUBLICATION ABSTRACT]</description><subject>Data envelopment analysis</subject><subject>Decision making</subject><subject>Efficiency</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Linear programming</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Methods</subject><issn>1568-4539</issn><issn>1573-2908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkLtPwzAYxC0EEqUws1oMbAG_Pj_Yoj4AqQgJ0bmyXRtcQgJ1oir960kFE9Pd8NOd7hC6pOSGEsZvyztKqJFCA2WSiiM0oqB4wQzRxwcvdSGAm1N0lvOGECoZ6BFSsxiTT6H2PS5rW_U5ZWzrNX6x9Ueq33AT8fRpmfEute943u33PZ7a1p6jk2irHC7-dIyW89nr5KFYPN8_TspF4RnV7dAI3DmvnAcvjY3BeCuVl4w5CdEEEvVaGM6iAqDOBStBuiA0gSgsxMDH6Po392vbfHcht6vPlH2oKluHpssrpiiHYe8AXv0DN023HRYNDOOcHX7gP5MMVII</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Saati M, S</creator><creator>Memariani, A</creator><creator>Jahanshahloo, G R</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20020801</creationdate><title>Efficiency Analysis and Ranking of DMUs with Fuzzy Data</title><author>Saati M, S ; Memariani, A ; Jahanshahloo, G R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-4553bbc7bc5c69afe9ca67c622b65f9e0f8d4932f7551bbea656be4805f4a5fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Data envelopment analysis</topic><topic>Decision making</topic><topic>Efficiency</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Linear programming</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saati M, S</creatorcontrib><creatorcontrib>Memariani, A</creatorcontrib><creatorcontrib>Jahanshahloo, G R</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Fuzzy optimization and decision making</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saati M, S</au><au>Memariani, A</au><au>Jahanshahloo, G R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficiency Analysis and Ranking of DMUs with Fuzzy Data</atitle><jtitle>Fuzzy optimization and decision making</jtitle><date>2002-08-01</date><risdate>2002</risdate><volume>1</volume><issue>3</issue><spage>255</spage><epage>267</epage><pages>255-267</pages><issn>1568-4539</issn><eissn>1573-2908</eissn><abstract>In this paper, a fuzzy version of CCR model (Charnes, Cooper and Rhodes (1978)) with asymmetrical triangular fuzzy number is presented and a procedure is suggested for its solution. The basic idea is to transform the fuzzy CCR model into a crisp linear programming problem by applying an alternative [alpha]-cut approach. Thereby, the problem is converted to an interval programming. In this method, instead of comparing the equality (or inequality) of two intervals, a variable is defined in the interval, not only satisfies the set of constraints, but also maximizes the efficiency value. We also propose a ranking method for fuzzy DMUs using presented fuzzy DEA approach. To demonstrate the concept, numerical examples are solved and solutions are compared with Guo and Tanaka (2001). [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1019648512614</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1568-4539
ispartof Fuzzy optimization and decision making, 2002-08, Vol.1 (3), p.255-267
issn 1568-4539
1573-2908
language eng
recordid cdi_proquest_miscellaneous_27135261
source ABI/INFORM Global; Springer Nature
subjects Data envelopment analysis
Decision making
Efficiency
Fuzzy logic
Fuzzy sets
Linear programming
Mathematical programming
Mathematics
Methods
title Efficiency Analysis and Ranking of DMUs with Fuzzy Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficiency%20Analysis%20and%20Ranking%20of%20DMUs%20with%20Fuzzy%20Data&rft.jtitle=Fuzzy%20optimization%20and%20decision%20making&rft.au=Saati%20M,%20S&rft.date=2002-08-01&rft.volume=1&rft.issue=3&rft.spage=255&rft.epage=267&rft.pages=255-267&rft.issn=1568-4539&rft.eissn=1573-2908&rft_id=info:doi/10.1023/A:1019648512614&rft_dat=%3Cproquest%3E27135261%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-4553bbc7bc5c69afe9ca67c622b65f9e0f8d4932f7551bbea656be4805f4a5fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=223322908&rft_id=info:pmid/&rfr_iscdi=true