Loading…
Fumarate mitigates disruption induced by fenpropathrin in the silkworm Bombyx mori (Lepidoptera): A metabolomics study
The silkworm Bombyx mori L. is a model organism of the order Lepidoptera. Understanding the mechanism of pesticide resistance in silkworms is valuable for Lepidopteran pest control. In this study, comparative metabolomics was used to analyze the metabolites of 2 silkworm strains with different pesti...
Saved in:
Published in: | Insect science 2023-06, Vol.30 (3), p.789-802 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3714-8b3864966a387b45268cd18c24d41bb163a02b91547cb1a663e0532596e2f4593 |
---|---|
cites | cdi_FETCH-LOGICAL-c3714-8b3864966a387b45268cd18c24d41bb163a02b91547cb1a663e0532596e2f4593 |
container_end_page | 802 |
container_issue | 3 |
container_start_page | 789 |
container_title | Insect science |
container_volume | 30 |
creator | Wang, Xue‐Yang Zhao, Zi‐Qin Song, Cheng‐Xian Su, Zhi‐Hao Li, Mu‐Wang Wu, Yang‐Chun Jin, Byung Rae Deng, Ming‐Jie |
description | The silkworm Bombyx mori L. is a model organism of the order Lepidoptera. Understanding the mechanism of pesticide resistance in silkworms is valuable for Lepidopteran pest control. In this study, comparative metabolomics was used to analyze the metabolites of 2 silkworm strains with different pesticide resistance levels at 6, 12, and 24 h after feeding with fenpropathrin. Twenty‐six of 27 metabolites showed significant differences after fenpropathrin treatment and were classified into 6 metabolic pathways: glycerophospholipid metabolism, sulfur metabolism, glycolysis, amino acid metabolism, the urea cycle, and the tricarboxylic acid (TCA) cycle. After analyzing the percentage changes in the metabolic pathways at the 3 time points, sulfur metabolism, glycolysis, and the TCA cycle showed significant responses to fenpropathrin. Confirmatory experiments were performed by feeding silkworms with key metabolites of the 3 pathways. The combination of iron(II) fumarate + folic acid (IF‐FA) enhanced fenpropathrin resistance in silkworms 6.38 fold, indicating that the TCA cycle is the core pathway associated with resistance. Furthermore, the disruption of several energy‐related metabolic pathways caused by fenpropathrin was shown to be recovered by IF‐FA in vitro. Therefore, IF‐FA may have a role in boosting silkworm pesticide resistance by modulating the equilibrium between the TCA cycle and its related metabolic pathways.
Graphical
A total of 27 metabolites were classified into 6 metabolic pathways: glycerophospholipid metabolism, sulfur metabolism, glycolysis, amino acid metabolism, the urea cycle, and the tricarboxylic acid (TCA) cycle. After analyzing the percentage changes in the metabolic pathways throughout the 3 time periods, sulfur metabolism, the urea cycle, and the TCA cycle showed significant responses to fenpropathrin. Iron(II) fumarate + folic acid has a role in boosting silkworm resistance by modulating the equilibrium between the TCA cycle and its related metabolic pathways. |
doi_str_mv | 10.1111/1744-7917.13114 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2714065276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825269929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3714-8b3864966a387b45268cd18c24d41bb163a02b91547cb1a663e0532596e2f4593</originalsourceid><addsrcrecordid>eNqFkT1PHDEQhq0oKJBL6nTIUhpSLPhr7TUdoFxAOkERqC171wcm6_XG9obsv8fHAQUN03g0fuad0bwAfMPoEJc4woKxSkgsDjHFmH0Ae6-VjyXnglSSI7kLPqd0jxCVRJJPYJeWmqAS7YF_y8nrqLOF3mV3W5IEO5fiNGYXBuiGbmptB80M13YYYxh1votu8wHznYXJ9X8eQvTwNHgz_4c-RAcPVnZ0XRizjfrHMTyB3mZtQh-8axNMeermL2Bnrftkvz6_C3Cz_Hl9dl6trn5dnJ2sqpYKzKrG0IYzybmmjTCsJrxpO9y0hHUMG4M51YgYiWsmWoM159SimpJackvWrJZ0AQ62umX1v5NNWXmXWtv3erBhSoqUKYjXRPCCfn-D3ocpDmU7RRpSRstyvEIdbak2hpSiXasxunLBWWGkNpaojQFqY4B6sqR07D_rTsbb7pV_8aAA9RZ4cL2d39NTF5e_t8KPrASVLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825269929</pqid></control><display><type>article</type><title>Fumarate mitigates disruption induced by fenpropathrin in the silkworm Bombyx mori (Lepidoptera): A metabolomics study</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wang, Xue‐Yang ; Zhao, Zi‐Qin ; Song, Cheng‐Xian ; Su, Zhi‐Hao ; Li, Mu‐Wang ; Wu, Yang‐Chun ; Jin, Byung Rae ; Deng, Ming‐Jie</creator><creatorcontrib>Wang, Xue‐Yang ; Zhao, Zi‐Qin ; Song, Cheng‐Xian ; Su, Zhi‐Hao ; Li, Mu‐Wang ; Wu, Yang‐Chun ; Jin, Byung Rae ; Deng, Ming‐Jie</creatorcontrib><description>The silkworm Bombyx mori L. is a model organism of the order Lepidoptera. Understanding the mechanism of pesticide resistance in silkworms is valuable for Lepidopteran pest control. In this study, comparative metabolomics was used to analyze the metabolites of 2 silkworm strains with different pesticide resistance levels at 6, 12, and 24 h after feeding with fenpropathrin. Twenty‐six of 27 metabolites showed significant differences after fenpropathrin treatment and were classified into 6 metabolic pathways: glycerophospholipid metabolism, sulfur metabolism, glycolysis, amino acid metabolism, the urea cycle, and the tricarboxylic acid (TCA) cycle. After analyzing the percentage changes in the metabolic pathways at the 3 time points, sulfur metabolism, glycolysis, and the TCA cycle showed significant responses to fenpropathrin. Confirmatory experiments were performed by feeding silkworms with key metabolites of the 3 pathways. The combination of iron(II) fumarate + folic acid (IF‐FA) enhanced fenpropathrin resistance in silkworms 6.38 fold, indicating that the TCA cycle is the core pathway associated with resistance. Furthermore, the disruption of several energy‐related metabolic pathways caused by fenpropathrin was shown to be recovered by IF‐FA in vitro. Therefore, IF‐FA may have a role in boosting silkworm pesticide resistance by modulating the equilibrium between the TCA cycle and its related metabolic pathways.
Graphical
A total of 27 metabolites were classified into 6 metabolic pathways: glycerophospholipid metabolism, sulfur metabolism, glycolysis, amino acid metabolism, the urea cycle, and the tricarboxylic acid (TCA) cycle. After analyzing the percentage changes in the metabolic pathways throughout the 3 time periods, sulfur metabolism, the urea cycle, and the TCA cycle showed significant responses to fenpropathrin. Iron(II) fumarate + folic acid has a role in boosting silkworm resistance by modulating the equilibrium between the TCA cycle and its related metabolic pathways.</description><identifier>ISSN: 1672-9609</identifier><identifier>EISSN: 1744-7917</identifier><identifier>DOI: 10.1111/1744-7917.13114</identifier><identifier>PMID: 36097390</identifier><language>eng</language><publisher>Australia: Wiley Subscription Services, Inc</publisher><subject>Amino acids ; Animals ; Bombyx - metabolism ; Bombyx mori ; Chemical pest control ; Disruption ; fenpropathrin ; Folic acid ; Glycolysis ; IF‐FA ; Lepidoptera ; Metabolic pathways ; Metabolism ; Metabolites ; Metabolomics ; Pest control ; Pesticide resistance ; Pesticides ; Pesticides - metabolism ; resistant mechanism ; Silkworms ; Sulfur ; Sulfur - metabolism ; Tricarboxylic acid cycle ; Urea</subject><ispartof>Insect science, 2023-06, Vol.30 (3), p.789-802</ispartof><rights>2022 Institute of Zoology, Chinese Academy of Sciences.</rights><rights>2023 Institute of Zoology, Chinese Academy of Sciences.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3714-8b3864966a387b45268cd18c24d41bb163a02b91547cb1a663e0532596e2f4593</citedby><cites>FETCH-LOGICAL-c3714-8b3864966a387b45268cd18c24d41bb163a02b91547cb1a663e0532596e2f4593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36097390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xue‐Yang</creatorcontrib><creatorcontrib>Zhao, Zi‐Qin</creatorcontrib><creatorcontrib>Song, Cheng‐Xian</creatorcontrib><creatorcontrib>Su, Zhi‐Hao</creatorcontrib><creatorcontrib>Li, Mu‐Wang</creatorcontrib><creatorcontrib>Wu, Yang‐Chun</creatorcontrib><creatorcontrib>Jin, Byung Rae</creatorcontrib><creatorcontrib>Deng, Ming‐Jie</creatorcontrib><title>Fumarate mitigates disruption induced by fenpropathrin in the silkworm Bombyx mori (Lepidoptera): A metabolomics study</title><title>Insect science</title><addtitle>Insect Sci</addtitle><description>The silkworm Bombyx mori L. is a model organism of the order Lepidoptera. Understanding the mechanism of pesticide resistance in silkworms is valuable for Lepidopteran pest control. In this study, comparative metabolomics was used to analyze the metabolites of 2 silkworm strains with different pesticide resistance levels at 6, 12, and 24 h after feeding with fenpropathrin. Twenty‐six of 27 metabolites showed significant differences after fenpropathrin treatment and were classified into 6 metabolic pathways: glycerophospholipid metabolism, sulfur metabolism, glycolysis, amino acid metabolism, the urea cycle, and the tricarboxylic acid (TCA) cycle. After analyzing the percentage changes in the metabolic pathways at the 3 time points, sulfur metabolism, glycolysis, and the TCA cycle showed significant responses to fenpropathrin. Confirmatory experiments were performed by feeding silkworms with key metabolites of the 3 pathways. The combination of iron(II) fumarate + folic acid (IF‐FA) enhanced fenpropathrin resistance in silkworms 6.38 fold, indicating that the TCA cycle is the core pathway associated with resistance. Furthermore, the disruption of several energy‐related metabolic pathways caused by fenpropathrin was shown to be recovered by IF‐FA in vitro. Therefore, IF‐FA may have a role in boosting silkworm pesticide resistance by modulating the equilibrium between the TCA cycle and its related metabolic pathways.
Graphical
A total of 27 metabolites were classified into 6 metabolic pathways: glycerophospholipid metabolism, sulfur metabolism, glycolysis, amino acid metabolism, the urea cycle, and the tricarboxylic acid (TCA) cycle. After analyzing the percentage changes in the metabolic pathways throughout the 3 time periods, sulfur metabolism, the urea cycle, and the TCA cycle showed significant responses to fenpropathrin. Iron(II) fumarate + folic acid has a role in boosting silkworm resistance by modulating the equilibrium between the TCA cycle and its related metabolic pathways.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Bombyx - metabolism</subject><subject>Bombyx mori</subject><subject>Chemical pest control</subject><subject>Disruption</subject><subject>fenpropathrin</subject><subject>Folic acid</subject><subject>Glycolysis</subject><subject>IF‐FA</subject><subject>Lepidoptera</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Pest control</subject><subject>Pesticide resistance</subject><subject>Pesticides</subject><subject>Pesticides - metabolism</subject><subject>resistant mechanism</subject><subject>Silkworms</subject><subject>Sulfur</subject><subject>Sulfur - metabolism</subject><subject>Tricarboxylic acid cycle</subject><subject>Urea</subject><issn>1672-9609</issn><issn>1744-7917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkT1PHDEQhq0oKJBL6nTIUhpSLPhr7TUdoFxAOkERqC171wcm6_XG9obsv8fHAQUN03g0fuad0bwAfMPoEJc4woKxSkgsDjHFmH0Ae6-VjyXnglSSI7kLPqd0jxCVRJJPYJeWmqAS7YF_y8nrqLOF3mV3W5IEO5fiNGYXBuiGbmptB80M13YYYxh1votu8wHznYXJ9X8eQvTwNHgz_4c-RAcPVnZ0XRizjfrHMTyB3mZtQh-8axNMeermL2Bnrftkvz6_C3Cz_Hl9dl6trn5dnJ2sqpYKzKrG0IYzybmmjTCsJrxpO9y0hHUMG4M51YgYiWsmWoM159SimpJackvWrJZ0AQ62umX1v5NNWXmXWtv3erBhSoqUKYjXRPCCfn-D3ocpDmU7RRpSRstyvEIdbak2hpSiXasxunLBWWGkNpaojQFqY4B6sqR07D_rTsbb7pV_8aAA9RZ4cL2d39NTF5e_t8KPrASVLQ</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Wang, Xue‐Yang</creator><creator>Zhao, Zi‐Qin</creator><creator>Song, Cheng‐Xian</creator><creator>Su, Zhi‐Hao</creator><creator>Li, Mu‐Wang</creator><creator>Wu, Yang‐Chun</creator><creator>Jin, Byung Rae</creator><creator>Deng, Ming‐Jie</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202306</creationdate><title>Fumarate mitigates disruption induced by fenpropathrin in the silkworm Bombyx mori (Lepidoptera): A metabolomics study</title><author>Wang, Xue‐Yang ; Zhao, Zi‐Qin ; Song, Cheng‐Xian ; Su, Zhi‐Hao ; Li, Mu‐Wang ; Wu, Yang‐Chun ; Jin, Byung Rae ; Deng, Ming‐Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3714-8b3864966a387b45268cd18c24d41bb163a02b91547cb1a663e0532596e2f4593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Bombyx - metabolism</topic><topic>Bombyx mori</topic><topic>Chemical pest control</topic><topic>Disruption</topic><topic>fenpropathrin</topic><topic>Folic acid</topic><topic>Glycolysis</topic><topic>IF‐FA</topic><topic>Lepidoptera</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Pest control</topic><topic>Pesticide resistance</topic><topic>Pesticides</topic><topic>Pesticides - metabolism</topic><topic>resistant mechanism</topic><topic>Silkworms</topic><topic>Sulfur</topic><topic>Sulfur - metabolism</topic><topic>Tricarboxylic acid cycle</topic><topic>Urea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xue‐Yang</creatorcontrib><creatorcontrib>Zhao, Zi‐Qin</creatorcontrib><creatorcontrib>Song, Cheng‐Xian</creatorcontrib><creatorcontrib>Su, Zhi‐Hao</creatorcontrib><creatorcontrib>Li, Mu‐Wang</creatorcontrib><creatorcontrib>Wu, Yang‐Chun</creatorcontrib><creatorcontrib>Jin, Byung Rae</creatorcontrib><creatorcontrib>Deng, Ming‐Jie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Insect science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xue‐Yang</au><au>Zhao, Zi‐Qin</au><au>Song, Cheng‐Xian</au><au>Su, Zhi‐Hao</au><au>Li, Mu‐Wang</au><au>Wu, Yang‐Chun</au><au>Jin, Byung Rae</au><au>Deng, Ming‐Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fumarate mitigates disruption induced by fenpropathrin in the silkworm Bombyx mori (Lepidoptera): A metabolomics study</atitle><jtitle>Insect science</jtitle><addtitle>Insect Sci</addtitle><date>2023-06</date><risdate>2023</risdate><volume>30</volume><issue>3</issue><spage>789</spage><epage>802</epage><pages>789-802</pages><issn>1672-9609</issn><eissn>1744-7917</eissn><abstract>The silkworm Bombyx mori L. is a model organism of the order Lepidoptera. Understanding the mechanism of pesticide resistance in silkworms is valuable for Lepidopteran pest control. In this study, comparative metabolomics was used to analyze the metabolites of 2 silkworm strains with different pesticide resistance levels at 6, 12, and 24 h after feeding with fenpropathrin. Twenty‐six of 27 metabolites showed significant differences after fenpropathrin treatment and were classified into 6 metabolic pathways: glycerophospholipid metabolism, sulfur metabolism, glycolysis, amino acid metabolism, the urea cycle, and the tricarboxylic acid (TCA) cycle. After analyzing the percentage changes in the metabolic pathways at the 3 time points, sulfur metabolism, glycolysis, and the TCA cycle showed significant responses to fenpropathrin. Confirmatory experiments were performed by feeding silkworms with key metabolites of the 3 pathways. The combination of iron(II) fumarate + folic acid (IF‐FA) enhanced fenpropathrin resistance in silkworms 6.38 fold, indicating that the TCA cycle is the core pathway associated with resistance. Furthermore, the disruption of several energy‐related metabolic pathways caused by fenpropathrin was shown to be recovered by IF‐FA in vitro. Therefore, IF‐FA may have a role in boosting silkworm pesticide resistance by modulating the equilibrium between the TCA cycle and its related metabolic pathways.
Graphical
A total of 27 metabolites were classified into 6 metabolic pathways: glycerophospholipid metabolism, sulfur metabolism, glycolysis, amino acid metabolism, the urea cycle, and the tricarboxylic acid (TCA) cycle. After analyzing the percentage changes in the metabolic pathways throughout the 3 time periods, sulfur metabolism, the urea cycle, and the TCA cycle showed significant responses to fenpropathrin. Iron(II) fumarate + folic acid has a role in boosting silkworm resistance by modulating the equilibrium between the TCA cycle and its related metabolic pathways.</abstract><cop>Australia</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36097390</pmid><doi>10.1111/1744-7917.13114</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-9609 |
ispartof | Insect science, 2023-06, Vol.30 (3), p.789-802 |
issn | 1672-9609 1744-7917 |
language | eng |
recordid | cdi_proquest_miscellaneous_2714065276 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Amino acids Animals Bombyx - metabolism Bombyx mori Chemical pest control Disruption fenpropathrin Folic acid Glycolysis IF‐FA Lepidoptera Metabolic pathways Metabolism Metabolites Metabolomics Pest control Pesticide resistance Pesticides Pesticides - metabolism resistant mechanism Silkworms Sulfur Sulfur - metabolism Tricarboxylic acid cycle Urea |
title | Fumarate mitigates disruption induced by fenpropathrin in the silkworm Bombyx mori (Lepidoptera): A metabolomics study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fumarate%20mitigates%20disruption%20induced%20by%20fenpropathrin%20in%20the%20silkworm%20Bombyx%20mori%20(Lepidoptera):%20A%20metabolomics%20study&rft.jtitle=Insect%20science&rft.au=Wang,%20Xue%E2%80%90Yang&rft.date=2023-06&rft.volume=30&rft.issue=3&rft.spage=789&rft.epage=802&rft.pages=789-802&rft.issn=1672-9609&rft.eissn=1744-7917&rft_id=info:doi/10.1111/1744-7917.13114&rft_dat=%3Cproquest_cross%3E2825269929%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3714-8b3864966a387b45268cd18c24d41bb163a02b91547cb1a663e0532596e2f4593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2825269929&rft_id=info:pmid/36097390&rfr_iscdi=true |