Loading…

Fumarate mitigates disruption induced by fenpropathrin in the silkworm Bombyx mori (Lepidoptera): A metabolomics study

The silkworm Bombyx mori L. is a model organism of the order Lepidoptera. Understanding the mechanism of pesticide resistance in silkworms is valuable for Lepidopteran pest control. In this study, comparative metabolomics was used to analyze the metabolites of 2 silkworm strains with different pesti...

Full description

Saved in:
Bibliographic Details
Published in:Insect science 2023-06, Vol.30 (3), p.789-802
Main Authors: Wang, Xue‐Yang, Zhao, Zi‐Qin, Song, Cheng‐Xian, Su, Zhi‐Hao, Li, Mu‐Wang, Wu, Yang‐Chun, Jin, Byung Rae, Deng, Ming‐Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3714-8b3864966a387b45268cd18c24d41bb163a02b91547cb1a663e0532596e2f4593
cites cdi_FETCH-LOGICAL-c3714-8b3864966a387b45268cd18c24d41bb163a02b91547cb1a663e0532596e2f4593
container_end_page 802
container_issue 3
container_start_page 789
container_title Insect science
container_volume 30
creator Wang, Xue‐Yang
Zhao, Zi‐Qin
Song, Cheng‐Xian
Su, Zhi‐Hao
Li, Mu‐Wang
Wu, Yang‐Chun
Jin, Byung Rae
Deng, Ming‐Jie
description The silkworm Bombyx mori L. is a model organism of the order Lepidoptera. Understanding the mechanism of pesticide resistance in silkworms is valuable for Lepidopteran pest control. In this study, comparative metabolomics was used to analyze the metabolites of 2 silkworm strains with different pesticide resistance levels at 6, 12, and 24 h after feeding with fenpropathrin. Twenty‐six of 27 metabolites showed significant differences after fenpropathrin treatment and were classified into 6 metabolic pathways: glycerophospholipid metabolism, sulfur metabolism, glycolysis, amino acid metabolism, the urea cycle, and the tricarboxylic acid (TCA) cycle. After analyzing the percentage changes in the metabolic pathways at the 3 time points, sulfur metabolism, glycolysis, and the TCA cycle showed significant responses to fenpropathrin. Confirmatory experiments were performed by feeding silkworms with key metabolites of the 3 pathways. The combination of iron(II) fumarate + folic acid (IF‐FA) enhanced fenpropathrin resistance in silkworms 6.38 fold, indicating that the TCA cycle is the core pathway associated with resistance. Furthermore, the disruption of several energy‐related metabolic pathways caused by fenpropathrin was shown to be recovered by IF‐FA in vitro. Therefore, IF‐FA may have a role in boosting silkworm pesticide resistance by modulating the equilibrium between the TCA cycle and its related metabolic pathways. Graphical A total of 27 metabolites were classified into 6 metabolic pathways: glycerophospholipid metabolism, sulfur metabolism, glycolysis, amino acid metabolism, the urea cycle, and the tricarboxylic acid (TCA) cycle. After analyzing the percentage changes in the metabolic pathways throughout the 3 time periods, sulfur metabolism, the urea cycle, and the TCA cycle showed significant responses to fenpropathrin. Iron(II) fumarate + folic acid has a role in boosting silkworm resistance by modulating the equilibrium between the TCA cycle and its related metabolic pathways.
doi_str_mv 10.1111/1744-7917.13114
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2714065276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825269929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3714-8b3864966a387b45268cd18c24d41bb163a02b91547cb1a663e0532596e2f4593</originalsourceid><addsrcrecordid>eNqFkT1PHDEQhq0oKJBL6nTIUhpSLPhr7TUdoFxAOkERqC171wcm6_XG9obsv8fHAQUN03g0fuad0bwAfMPoEJc4woKxSkgsDjHFmH0Ae6-VjyXnglSSI7kLPqd0jxCVRJJPYJeWmqAS7YF_y8nrqLOF3mV3W5IEO5fiNGYXBuiGbmptB80M13YYYxh1votu8wHznYXJ9X8eQvTwNHgz_4c-RAcPVnZ0XRizjfrHMTyB3mZtQh-8axNMeermL2Bnrftkvz6_C3Cz_Hl9dl6trn5dnJ2sqpYKzKrG0IYzybmmjTCsJrxpO9y0hHUMG4M51YgYiWsmWoM159SimpJackvWrJZ0AQ62umX1v5NNWXmXWtv3erBhSoqUKYjXRPCCfn-D3ocpDmU7RRpSRstyvEIdbak2hpSiXasxunLBWWGkNpaojQFqY4B6sqR07D_rTsbb7pV_8aAA9RZ4cL2d39NTF5e_t8KPrASVLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825269929</pqid></control><display><type>article</type><title>Fumarate mitigates disruption induced by fenpropathrin in the silkworm Bombyx mori (Lepidoptera): A metabolomics study</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wang, Xue‐Yang ; Zhao, Zi‐Qin ; Song, Cheng‐Xian ; Su, Zhi‐Hao ; Li, Mu‐Wang ; Wu, Yang‐Chun ; Jin, Byung Rae ; Deng, Ming‐Jie</creator><creatorcontrib>Wang, Xue‐Yang ; Zhao, Zi‐Qin ; Song, Cheng‐Xian ; Su, Zhi‐Hao ; Li, Mu‐Wang ; Wu, Yang‐Chun ; Jin, Byung Rae ; Deng, Ming‐Jie</creatorcontrib><description>The silkworm Bombyx mori L. is a model organism of the order Lepidoptera. Understanding the mechanism of pesticide resistance in silkworms is valuable for Lepidopteran pest control. In this study, comparative metabolomics was used to analyze the metabolites of 2 silkworm strains with different pesticide resistance levels at 6, 12, and 24 h after feeding with fenpropathrin. Twenty‐six of 27 metabolites showed significant differences after fenpropathrin treatment and were classified into 6 metabolic pathways: glycerophospholipid metabolism, sulfur metabolism, glycolysis, amino acid metabolism, the urea cycle, and the tricarboxylic acid (TCA) cycle. After analyzing the percentage changes in the metabolic pathways at the 3 time points, sulfur metabolism, glycolysis, and the TCA cycle showed significant responses to fenpropathrin. Confirmatory experiments were performed by feeding silkworms with key metabolites of the 3 pathways. The combination of iron(II) fumarate + folic acid (IF‐FA) enhanced fenpropathrin resistance in silkworms 6.38 fold, indicating that the TCA cycle is the core pathway associated with resistance. Furthermore, the disruption of several energy‐related metabolic pathways caused by fenpropathrin was shown to be recovered by IF‐FA in vitro. Therefore, IF‐FA may have a role in boosting silkworm pesticide resistance by modulating the equilibrium between the TCA cycle and its related metabolic pathways. Graphical A total of 27 metabolites were classified into 6 metabolic pathways: glycerophospholipid metabolism, sulfur metabolism, glycolysis, amino acid metabolism, the urea cycle, and the tricarboxylic acid (TCA) cycle. After analyzing the percentage changes in the metabolic pathways throughout the 3 time periods, sulfur metabolism, the urea cycle, and the TCA cycle showed significant responses to fenpropathrin. Iron(II) fumarate + folic acid has a role in boosting silkworm resistance by modulating the equilibrium between the TCA cycle and its related metabolic pathways.</description><identifier>ISSN: 1672-9609</identifier><identifier>EISSN: 1744-7917</identifier><identifier>DOI: 10.1111/1744-7917.13114</identifier><identifier>PMID: 36097390</identifier><language>eng</language><publisher>Australia: Wiley Subscription Services, Inc</publisher><subject>Amino acids ; Animals ; Bombyx - metabolism ; Bombyx mori ; Chemical pest control ; Disruption ; fenpropathrin ; Folic acid ; Glycolysis ; IF‐FA ; Lepidoptera ; Metabolic pathways ; Metabolism ; Metabolites ; Metabolomics ; Pest control ; Pesticide resistance ; Pesticides ; Pesticides - metabolism ; resistant mechanism ; Silkworms ; Sulfur ; Sulfur - metabolism ; Tricarboxylic acid cycle ; Urea</subject><ispartof>Insect science, 2023-06, Vol.30 (3), p.789-802</ispartof><rights>2022 Institute of Zoology, Chinese Academy of Sciences.</rights><rights>2023 Institute of Zoology, Chinese Academy of Sciences.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3714-8b3864966a387b45268cd18c24d41bb163a02b91547cb1a663e0532596e2f4593</citedby><cites>FETCH-LOGICAL-c3714-8b3864966a387b45268cd18c24d41bb163a02b91547cb1a663e0532596e2f4593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36097390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xue‐Yang</creatorcontrib><creatorcontrib>Zhao, Zi‐Qin</creatorcontrib><creatorcontrib>Song, Cheng‐Xian</creatorcontrib><creatorcontrib>Su, Zhi‐Hao</creatorcontrib><creatorcontrib>Li, Mu‐Wang</creatorcontrib><creatorcontrib>Wu, Yang‐Chun</creatorcontrib><creatorcontrib>Jin, Byung Rae</creatorcontrib><creatorcontrib>Deng, Ming‐Jie</creatorcontrib><title>Fumarate mitigates disruption induced by fenpropathrin in the silkworm Bombyx mori (Lepidoptera): A metabolomics study</title><title>Insect science</title><addtitle>Insect Sci</addtitle><description>The silkworm Bombyx mori L. is a model organism of the order Lepidoptera. Understanding the mechanism of pesticide resistance in silkworms is valuable for Lepidopteran pest control. In this study, comparative metabolomics was used to analyze the metabolites of 2 silkworm strains with different pesticide resistance levels at 6, 12, and 24 h after feeding with fenpropathrin. Twenty‐six of 27 metabolites showed significant differences after fenpropathrin treatment and were classified into 6 metabolic pathways: glycerophospholipid metabolism, sulfur metabolism, glycolysis, amino acid metabolism, the urea cycle, and the tricarboxylic acid (TCA) cycle. After analyzing the percentage changes in the metabolic pathways at the 3 time points, sulfur metabolism, glycolysis, and the TCA cycle showed significant responses to fenpropathrin. Confirmatory experiments were performed by feeding silkworms with key metabolites of the 3 pathways. The combination of iron(II) fumarate + folic acid (IF‐FA) enhanced fenpropathrin resistance in silkworms 6.38 fold, indicating that the TCA cycle is the core pathway associated with resistance. Furthermore, the disruption of several energy‐related metabolic pathways caused by fenpropathrin was shown to be recovered by IF‐FA in vitro. Therefore, IF‐FA may have a role in boosting silkworm pesticide resistance by modulating the equilibrium between the TCA cycle and its related metabolic pathways. Graphical A total of 27 metabolites were classified into 6 metabolic pathways: glycerophospholipid metabolism, sulfur metabolism, glycolysis, amino acid metabolism, the urea cycle, and the tricarboxylic acid (TCA) cycle. After analyzing the percentage changes in the metabolic pathways throughout the 3 time periods, sulfur metabolism, the urea cycle, and the TCA cycle showed significant responses to fenpropathrin. Iron(II) fumarate + folic acid has a role in boosting silkworm resistance by modulating the equilibrium between the TCA cycle and its related metabolic pathways.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Bombyx - metabolism</subject><subject>Bombyx mori</subject><subject>Chemical pest control</subject><subject>Disruption</subject><subject>fenpropathrin</subject><subject>Folic acid</subject><subject>Glycolysis</subject><subject>IF‐FA</subject><subject>Lepidoptera</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Pest control</subject><subject>Pesticide resistance</subject><subject>Pesticides</subject><subject>Pesticides - metabolism</subject><subject>resistant mechanism</subject><subject>Silkworms</subject><subject>Sulfur</subject><subject>Sulfur - metabolism</subject><subject>Tricarboxylic acid cycle</subject><subject>Urea</subject><issn>1672-9609</issn><issn>1744-7917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkT1PHDEQhq0oKJBL6nTIUhpSLPhr7TUdoFxAOkERqC171wcm6_XG9obsv8fHAQUN03g0fuad0bwAfMPoEJc4woKxSkgsDjHFmH0Ae6-VjyXnglSSI7kLPqd0jxCVRJJPYJeWmqAS7YF_y8nrqLOF3mV3W5IEO5fiNGYXBuiGbmptB80M13YYYxh1votu8wHznYXJ9X8eQvTwNHgz_4c-RAcPVnZ0XRizjfrHMTyB3mZtQh-8axNMeermL2Bnrftkvz6_C3Cz_Hl9dl6trn5dnJ2sqpYKzKrG0IYzybmmjTCsJrxpO9y0hHUMG4M51YgYiWsmWoM159SimpJackvWrJZ0AQ62umX1v5NNWXmXWtv3erBhSoqUKYjXRPCCfn-D3ocpDmU7RRpSRstyvEIdbak2hpSiXasxunLBWWGkNpaojQFqY4B6sqR07D_rTsbb7pV_8aAA9RZ4cL2d39NTF5e_t8KPrASVLQ</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Wang, Xue‐Yang</creator><creator>Zhao, Zi‐Qin</creator><creator>Song, Cheng‐Xian</creator><creator>Su, Zhi‐Hao</creator><creator>Li, Mu‐Wang</creator><creator>Wu, Yang‐Chun</creator><creator>Jin, Byung Rae</creator><creator>Deng, Ming‐Jie</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202306</creationdate><title>Fumarate mitigates disruption induced by fenpropathrin in the silkworm Bombyx mori (Lepidoptera): A metabolomics study</title><author>Wang, Xue‐Yang ; Zhao, Zi‐Qin ; Song, Cheng‐Xian ; Su, Zhi‐Hao ; Li, Mu‐Wang ; Wu, Yang‐Chun ; Jin, Byung Rae ; Deng, Ming‐Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3714-8b3864966a387b45268cd18c24d41bb163a02b91547cb1a663e0532596e2f4593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Bombyx - metabolism</topic><topic>Bombyx mori</topic><topic>Chemical pest control</topic><topic>Disruption</topic><topic>fenpropathrin</topic><topic>Folic acid</topic><topic>Glycolysis</topic><topic>IF‐FA</topic><topic>Lepidoptera</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Pest control</topic><topic>Pesticide resistance</topic><topic>Pesticides</topic><topic>Pesticides - metabolism</topic><topic>resistant mechanism</topic><topic>Silkworms</topic><topic>Sulfur</topic><topic>Sulfur - metabolism</topic><topic>Tricarboxylic acid cycle</topic><topic>Urea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xue‐Yang</creatorcontrib><creatorcontrib>Zhao, Zi‐Qin</creatorcontrib><creatorcontrib>Song, Cheng‐Xian</creatorcontrib><creatorcontrib>Su, Zhi‐Hao</creatorcontrib><creatorcontrib>Li, Mu‐Wang</creatorcontrib><creatorcontrib>Wu, Yang‐Chun</creatorcontrib><creatorcontrib>Jin, Byung Rae</creatorcontrib><creatorcontrib>Deng, Ming‐Jie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Insect science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xue‐Yang</au><au>Zhao, Zi‐Qin</au><au>Song, Cheng‐Xian</au><au>Su, Zhi‐Hao</au><au>Li, Mu‐Wang</au><au>Wu, Yang‐Chun</au><au>Jin, Byung Rae</au><au>Deng, Ming‐Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fumarate mitigates disruption induced by fenpropathrin in the silkworm Bombyx mori (Lepidoptera): A metabolomics study</atitle><jtitle>Insect science</jtitle><addtitle>Insect Sci</addtitle><date>2023-06</date><risdate>2023</risdate><volume>30</volume><issue>3</issue><spage>789</spage><epage>802</epage><pages>789-802</pages><issn>1672-9609</issn><eissn>1744-7917</eissn><abstract>The silkworm Bombyx mori L. is a model organism of the order Lepidoptera. Understanding the mechanism of pesticide resistance in silkworms is valuable for Lepidopteran pest control. In this study, comparative metabolomics was used to analyze the metabolites of 2 silkworm strains with different pesticide resistance levels at 6, 12, and 24 h after feeding with fenpropathrin. Twenty‐six of 27 metabolites showed significant differences after fenpropathrin treatment and were classified into 6 metabolic pathways: glycerophospholipid metabolism, sulfur metabolism, glycolysis, amino acid metabolism, the urea cycle, and the tricarboxylic acid (TCA) cycle. After analyzing the percentage changes in the metabolic pathways at the 3 time points, sulfur metabolism, glycolysis, and the TCA cycle showed significant responses to fenpropathrin. Confirmatory experiments were performed by feeding silkworms with key metabolites of the 3 pathways. The combination of iron(II) fumarate + folic acid (IF‐FA) enhanced fenpropathrin resistance in silkworms 6.38 fold, indicating that the TCA cycle is the core pathway associated with resistance. Furthermore, the disruption of several energy‐related metabolic pathways caused by fenpropathrin was shown to be recovered by IF‐FA in vitro. Therefore, IF‐FA may have a role in boosting silkworm pesticide resistance by modulating the equilibrium between the TCA cycle and its related metabolic pathways. Graphical A total of 27 metabolites were classified into 6 metabolic pathways: glycerophospholipid metabolism, sulfur metabolism, glycolysis, amino acid metabolism, the urea cycle, and the tricarboxylic acid (TCA) cycle. After analyzing the percentage changes in the metabolic pathways throughout the 3 time periods, sulfur metabolism, the urea cycle, and the TCA cycle showed significant responses to fenpropathrin. Iron(II) fumarate + folic acid has a role in boosting silkworm resistance by modulating the equilibrium between the TCA cycle and its related metabolic pathways.</abstract><cop>Australia</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36097390</pmid><doi>10.1111/1744-7917.13114</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1672-9609
ispartof Insect science, 2023-06, Vol.30 (3), p.789-802
issn 1672-9609
1744-7917
language eng
recordid cdi_proquest_miscellaneous_2714065276
source Wiley-Blackwell Read & Publish Collection
subjects Amino acids
Animals
Bombyx - metabolism
Bombyx mori
Chemical pest control
Disruption
fenpropathrin
Folic acid
Glycolysis
IF‐FA
Lepidoptera
Metabolic pathways
Metabolism
Metabolites
Metabolomics
Pest control
Pesticide resistance
Pesticides
Pesticides - metabolism
resistant mechanism
Silkworms
Sulfur
Sulfur - metabolism
Tricarboxylic acid cycle
Urea
title Fumarate mitigates disruption induced by fenpropathrin in the silkworm Bombyx mori (Lepidoptera): A metabolomics study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fumarate%20mitigates%20disruption%20induced%20by%20fenpropathrin%20in%20the%20silkworm%20Bombyx%20mori%20(Lepidoptera):%20A%20metabolomics%20study&rft.jtitle=Insect%20science&rft.au=Wang,%20Xue%E2%80%90Yang&rft.date=2023-06&rft.volume=30&rft.issue=3&rft.spage=789&rft.epage=802&rft.pages=789-802&rft.issn=1672-9609&rft.eissn=1744-7917&rft_id=info:doi/10.1111/1744-7917.13114&rft_dat=%3Cproquest_cross%3E2825269929%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3714-8b3864966a387b45268cd18c24d41bb163a02b91547cb1a663e0532596e2f4593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2825269929&rft_id=info:pmid/36097390&rfr_iscdi=true