Loading…
Temporal subharmonic amplitude and phase behaviour in a jet shear layer: wavelet analysis and Hamiltonian formulation
Fourier and wavelet transformation techniques are utilized in a complementary manner in order to characterize temporal aspects of the transition of a planar jet shear layer. The subharmonic is found to exhibit an interesting temporal amplitude and phase variation that has not been previously reporte...
Saved in:
Published in: | Journal of fluid mechanics 1999-09, Vol.394, p.205-240 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fourier and wavelet transformation techniques are utilized in a complementary
manner in order to characterize temporal aspects of the transition of a planar jet
shear layer. The subharmonic is found to exhibit an interesting temporal amplitude
and phase variation that has not been previously reported. This takes the form of intermittent
π-shifts in subharmonic phase between two fixed phase values. These phase
jumps are highly correlated with local minima of the subharmonic amplitude. In contrast,
the fundamental amplitude and phase show no such behaviour. The temporal
phase behaviour of the subharmonic has the effect of intermittently disrupting the
phase lock with the fundamental. A dynamical systems model is developed which is
based on a classic vortex representation of the shear layer. The Hamiltonian formulation
of the problem is shown to provide remarkable agreement with the experimental
results. All the essential aspects of the temporal amplitude and phase behaviour of
the subharmonic are reproduced by the model including amplitude-dependent effects.
The model is also shown to provide a dynamical systems based explanation for
time-averaged amplitude and phase behaviour observed in these as well as earlier experiments.
The results of experiments involving both bimodal forcing at fundamental
and subharmonic frequencies with prescribed initial effective phase angle as well as
experiments involving only fundamental excitation over an amplitude range extending
two orders of magnitude are presented. The temporal subharmonic amplitude
and phase behaviour is observed in bimodal forcing experiments in those regions of
the flow characterized by subharmonic mode suppression and vortex tearing events
(even if the forcing amplitudes are quite large). In addition, temporal subharmonic
amplitude and phase behaviour is the rule in experiments involving low-amplitude
forcing of the fundamental and the natural development of the subharmonic. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/S0022112099005650 |