Loading…
SiOxNy films deposited with SiCl4 by remote plasma enhanced CVD
Silicon oxynitride films have been deposited with SiCl4 by remote-plasma enhanced chemical vapor deposition (PECVD) at a substrate temperature of 250°C. Different mixtures of O2 and NH3 were used to obtain different oxynitride compositions ranging from SiO2 to an stoichiometry close to that of silic...
Saved in:
Published in: | Journal of materials science 1999, Vol.34 (12), p.3007-3012 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Silicon oxynitride films have been deposited with SiCl4 by remote-plasma enhanced chemical vapor deposition (PECVD) at a substrate temperature of 250°C. Different mixtures of O2 and NH3 were used to obtain different oxynitride compositions ranging from SiO2 to an stoichiometry close to that of silicon nitride. Rutherford backscattering spectrometry was used to determine the chemical composition of the SiOxNy films. The behavior of the IR absorption spectra as well as the refractive index measured by ellipsometry were used to estimate the effect of the different deposition parameters. It was found that the IR spectra show a shift of the characteristic peak associated with the stretching vibration mode of the Si-O-Si bonds towards lower wavenumbers as the relative concentration of ammonia was increased with respect oxygen. No double peaks associated with silicon oxide and silicon nitride were observed, indicating the formation of an homogeneous alloy. The IR spectra did not show any presence of water or hydrogen related impurities in the film. Also the effect of a hydrogen flow added during the deposition process on the structural characteristics of the deposited films was studied using dielectric spectroscopy and atomic force microscopy measurements showing that the hydrogen flow added during deposition results in a reduction of the film roughness and a planarization effect, which is very interesting for the application of these films in microelectronics devices. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1023/A:1004620409994 |