Loading…

A simple technique for self-calibration

This paper introduces an extension of Hartley's self-calibration technique based on properties of the essential matrix, allowing for the stable computation of varying focal lengths and principal point. It is well known that the three singular values of an essential must satisfy two conditions:...

Full description

Saved in:
Bibliographic Details
Main Authors: Mendonca, P.R.S., Cipolla, R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 505 Vol. 1
container_issue
container_start_page 500
container_title
container_volume 1
creator Mendonca, P.R.S.
Cipolla, R.
description This paper introduces an extension of Hartley's self-calibration technique based on properties of the essential matrix, allowing for the stable computation of varying focal lengths and principal point. It is well known that the three singular values of an essential must satisfy two conditions: one of them must be zero and the other two must be identical. An essential matrix is obtained from the fundamental matrix by a transformation involving the intrinsic parameters of the pair of cameras associated with the two views. Thus, constraints on the essential matrix can be translated into constraints on the intrinsic parameters of the pair of cameras. This allows for a search in the space of intrinsic parameters of the cameras in order to minimize a cost function related to the constraints. This approach is shown to be simpler than other methods, with comparable accuracy in the results. Another advantage of the technique is that it does not require as input a consistent set of weakly calibrated camera matrices (as defined by Harley) for the whole image sequence, i.e. a set of cameras consistent with the correspondences and known up to a projective transformation.
doi_str_mv 10.1109/CVPR.1999.786984
format conference_proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27151266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>786984</ieee_id><sourcerecordid>27151266</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1604-41b0d49cf5ac9444c0bd72b10e8f98726ddc52e27dd3022f1120856beeaaef6a3</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0eEqV0R0yZYEq413Fs37GqeEmVQAhYI8e5FkZpEuJ24N9TqQxMZzifPh0dIS4RCkSg29XHy2uBRFQYq8mqIzFD0GWuCelYLMhYMJoqQEV08q87E-cpfQHI0kiYiZtlluJm7Djbsv_s4_eOszBMWeIu5N51sZncNg79hTgNrku8-Mu5eL-_e1s95uvnh6fVcp1H1KByhQ20inyonCellIemNbJBYBvIGqnb1leSpWnbEqQMiBJspRtm5zhoV87F9cE7TsN-S9rWm5g8d53redilWhqsUGq9B68OYGTmepzixk0_9eGL8hci9U9Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>27151266</pqid></control><display><type>conference_proceeding</type><title>A simple technique for self-calibration</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mendonca, P.R.S. ; Cipolla, R.</creator><creatorcontrib>Mendonca, P.R.S. ; Cipolla, R.</creatorcontrib><description>This paper introduces an extension of Hartley's self-calibration technique based on properties of the essential matrix, allowing for the stable computation of varying focal lengths and principal point. It is well known that the three singular values of an essential must satisfy two conditions: one of them must be zero and the other two must be identical. An essential matrix is obtained from the fundamental matrix by a transformation involving the intrinsic parameters of the pair of cameras associated with the two views. Thus, constraints on the essential matrix can be translated into constraints on the intrinsic parameters of the pair of cameras. This allows for a search in the space of intrinsic parameters of the cameras in order to minimize a cost function related to the constraints. This approach is shown to be simpler than other methods, with comparable accuracy in the results. Another advantage of the technique is that it does not require as input a consistent set of weakly calibrated camera matrices (as defined by Harley) for the whole image sequence, i.e. a set of cameras consistent with the correspondences and known up to a projective transformation.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9780769501499</identifier><identifier>ISBN: 0769501494</identifier><identifier>EISSN: 1063-6919</identifier><identifier>DOI: 10.1109/CVPR.1999.786984</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calibration ; Cameras ; Closed-form solution ; Computer vision ; Cost function ; Image sequences ; Layout ; Sufficient conditions ; Tensile stress ; Transmission line matrix methods</subject><ispartof>Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, Vol.1, p.500-505 Vol. 1</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/786984$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2052,4036,4037,27901,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/786984$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mendonca, P.R.S.</creatorcontrib><creatorcontrib>Cipolla, R.</creatorcontrib><title>A simple technique for self-calibration</title><title>Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>This paper introduces an extension of Hartley's self-calibration technique based on properties of the essential matrix, allowing for the stable computation of varying focal lengths and principal point. It is well known that the three singular values of an essential must satisfy two conditions: one of them must be zero and the other two must be identical. An essential matrix is obtained from the fundamental matrix by a transformation involving the intrinsic parameters of the pair of cameras associated with the two views. Thus, constraints on the essential matrix can be translated into constraints on the intrinsic parameters of the pair of cameras. This allows for a search in the space of intrinsic parameters of the cameras in order to minimize a cost function related to the constraints. This approach is shown to be simpler than other methods, with comparable accuracy in the results. Another advantage of the technique is that it does not require as input a consistent set of weakly calibrated camera matrices (as defined by Harley) for the whole image sequence, i.e. a set of cameras consistent with the correspondences and known up to a projective transformation.</description><subject>Calibration</subject><subject>Cameras</subject><subject>Closed-form solution</subject><subject>Computer vision</subject><subject>Cost function</subject><subject>Image sequences</subject><subject>Layout</subject><subject>Sufficient conditions</subject><subject>Tensile stress</subject><subject>Transmission line matrix methods</subject><issn>1063-6919</issn><issn>1063-6919</issn><isbn>9780769501499</isbn><isbn>0769501494</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNkDtPwzAUhS0eEqV0R0yZYEq413Fs37GqeEmVQAhYI8e5FkZpEuJ24N9TqQxMZzifPh0dIS4RCkSg29XHy2uBRFQYq8mqIzFD0GWuCelYLMhYMJoqQEV08q87E-cpfQHI0kiYiZtlluJm7Djbsv_s4_eOszBMWeIu5N51sZncNg79hTgNrku8-Mu5eL-_e1s95uvnh6fVcp1H1KByhQ20inyonCellIemNbJBYBvIGqnb1leSpWnbEqQMiBJspRtm5zhoV87F9cE7TsN-S9rWm5g8d53redilWhqsUGq9B68OYGTmepzixk0_9eGL8hci9U9Y</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Mendonca, P.R.S.</creator><creator>Cipolla, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1999</creationdate><title>A simple technique for self-calibration</title><author>Mendonca, P.R.S. ; Cipolla, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1604-41b0d49cf5ac9444c0bd72b10e8f98726ddc52e27dd3022f1120856beeaaef6a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Calibration</topic><topic>Cameras</topic><topic>Closed-form solution</topic><topic>Computer vision</topic><topic>Cost function</topic><topic>Image sequences</topic><topic>Layout</topic><topic>Sufficient conditions</topic><topic>Tensile stress</topic><topic>Transmission line matrix methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Mendonca, P.R.S.</creatorcontrib><creatorcontrib>Cipolla, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mendonca, P.R.S.</au><au>Cipolla, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A simple technique for self-calibration</atitle><btitle>Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>1999</date><risdate>1999</risdate><volume>1</volume><spage>500</spage><epage>505 Vol. 1</epage><pages>500-505 Vol. 1</pages><issn>1063-6919</issn><eissn>1063-6919</eissn><isbn>9780769501499</isbn><isbn>0769501494</isbn><abstract>This paper introduces an extension of Hartley's self-calibration technique based on properties of the essential matrix, allowing for the stable computation of varying focal lengths and principal point. It is well known that the three singular values of an essential must satisfy two conditions: one of them must be zero and the other two must be identical. An essential matrix is obtained from the fundamental matrix by a transformation involving the intrinsic parameters of the pair of cameras associated with the two views. Thus, constraints on the essential matrix can be translated into constraints on the intrinsic parameters of the pair of cameras. This allows for a search in the space of intrinsic parameters of the cameras in order to minimize a cost function related to the constraints. This approach is shown to be simpler than other methods, with comparable accuracy in the results. Another advantage of the technique is that it does not require as input a consistent set of weakly calibrated camera matrices (as defined by Harley) for the whole image sequence, i.e. a set of cameras consistent with the correspondences and known up to a projective transformation.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.1999.786984</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, Vol.1, p.500-505 Vol. 1
issn 1063-6919
1063-6919
language eng
recordid cdi_proquest_miscellaneous_27151266
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Calibration
Cameras
Closed-form solution
Computer vision
Cost function
Image sequences
Layout
Sufficient conditions
Tensile stress
Transmission line matrix methods
title A simple technique for self-calibration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20simple%20technique%20for%20self-calibration&rft.btitle=Proceedings%20of%20the%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Mendonca,%20P.R.S.&rft.date=1999&rft.volume=1&rft.spage=500&rft.epage=505%20Vol.%201&rft.pages=500-505%20Vol.%201&rft.issn=1063-6919&rft.eissn=1063-6919&rft.isbn=9780769501499&rft.isbn_list=0769501494&rft_id=info:doi/10.1109/CVPR.1999.786984&rft_dat=%3Cproquest_6IE%3E27151266%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1604-41b0d49cf5ac9444c0bd72b10e8f98726ddc52e27dd3022f1120856beeaaef6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27151266&rft_id=info:pmid/&rft_ieee_id=786984&rfr_iscdi=true