Loading…
A simple technique for self-calibration
This paper introduces an extension of Hartley's self-calibration technique based on properties of the essential matrix, allowing for the stable computation of varying focal lengths and principal point. It is well known that the three singular values of an essential must satisfy two conditions:...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 505 Vol. 1 |
container_issue | |
container_start_page | 500 |
container_title | |
container_volume | 1 |
creator | Mendonca, P.R.S. Cipolla, R. |
description | This paper introduces an extension of Hartley's self-calibration technique based on properties of the essential matrix, allowing for the stable computation of varying focal lengths and principal point. It is well known that the three singular values of an essential must satisfy two conditions: one of them must be zero and the other two must be identical. An essential matrix is obtained from the fundamental matrix by a transformation involving the intrinsic parameters of the pair of cameras associated with the two views. Thus, constraints on the essential matrix can be translated into constraints on the intrinsic parameters of the pair of cameras. This allows for a search in the space of intrinsic parameters of the cameras in order to minimize a cost function related to the constraints. This approach is shown to be simpler than other methods, with comparable accuracy in the results. Another advantage of the technique is that it does not require as input a consistent set of weakly calibrated camera matrices (as defined by Harley) for the whole image sequence, i.e. a set of cameras consistent with the correspondences and known up to a projective transformation. |
doi_str_mv | 10.1109/CVPR.1999.786984 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27151266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>786984</ieee_id><sourcerecordid>27151266</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1604-41b0d49cf5ac9444c0bd72b10e8f98726ddc52e27dd3022f1120856beeaaef6a3</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0eEqV0R0yZYEq413Fs37GqeEmVQAhYI8e5FkZpEuJ24N9TqQxMZzifPh0dIS4RCkSg29XHy2uBRFQYq8mqIzFD0GWuCelYLMhYMJoqQEV08q87E-cpfQHI0kiYiZtlluJm7Djbsv_s4_eOszBMWeIu5N51sZncNg79hTgNrku8-Mu5eL-_e1s95uvnh6fVcp1H1KByhQ20inyonCellIemNbJBYBvIGqnb1leSpWnbEqQMiBJspRtm5zhoV87F9cE7TsN-S9rWm5g8d53redilWhqsUGq9B68OYGTmepzixk0_9eGL8hci9U9Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>27151266</pqid></control><display><type>conference_proceeding</type><title>A simple technique for self-calibration</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mendonca, P.R.S. ; Cipolla, R.</creator><creatorcontrib>Mendonca, P.R.S. ; Cipolla, R.</creatorcontrib><description>This paper introduces an extension of Hartley's self-calibration technique based on properties of the essential matrix, allowing for the stable computation of varying focal lengths and principal point. It is well known that the three singular values of an essential must satisfy two conditions: one of them must be zero and the other two must be identical. An essential matrix is obtained from the fundamental matrix by a transformation involving the intrinsic parameters of the pair of cameras associated with the two views. Thus, constraints on the essential matrix can be translated into constraints on the intrinsic parameters of the pair of cameras. This allows for a search in the space of intrinsic parameters of the cameras in order to minimize a cost function related to the constraints. This approach is shown to be simpler than other methods, with comparable accuracy in the results. Another advantage of the technique is that it does not require as input a consistent set of weakly calibrated camera matrices (as defined by Harley) for the whole image sequence, i.e. a set of cameras consistent with the correspondences and known up to a projective transformation.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9780769501499</identifier><identifier>ISBN: 0769501494</identifier><identifier>EISSN: 1063-6919</identifier><identifier>DOI: 10.1109/CVPR.1999.786984</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calibration ; Cameras ; Closed-form solution ; Computer vision ; Cost function ; Image sequences ; Layout ; Sufficient conditions ; Tensile stress ; Transmission line matrix methods</subject><ispartof>Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, Vol.1, p.500-505 Vol. 1</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/786984$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2052,4036,4037,27901,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/786984$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mendonca, P.R.S.</creatorcontrib><creatorcontrib>Cipolla, R.</creatorcontrib><title>A simple technique for self-calibration</title><title>Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>This paper introduces an extension of Hartley's self-calibration technique based on properties of the essential matrix, allowing for the stable computation of varying focal lengths and principal point. It is well known that the three singular values of an essential must satisfy two conditions: one of them must be zero and the other two must be identical. An essential matrix is obtained from the fundamental matrix by a transformation involving the intrinsic parameters of the pair of cameras associated with the two views. Thus, constraints on the essential matrix can be translated into constraints on the intrinsic parameters of the pair of cameras. This allows for a search in the space of intrinsic parameters of the cameras in order to minimize a cost function related to the constraints. This approach is shown to be simpler than other methods, with comparable accuracy in the results. Another advantage of the technique is that it does not require as input a consistent set of weakly calibrated camera matrices (as defined by Harley) for the whole image sequence, i.e. a set of cameras consistent with the correspondences and known up to a projective transformation.</description><subject>Calibration</subject><subject>Cameras</subject><subject>Closed-form solution</subject><subject>Computer vision</subject><subject>Cost function</subject><subject>Image sequences</subject><subject>Layout</subject><subject>Sufficient conditions</subject><subject>Tensile stress</subject><subject>Transmission line matrix methods</subject><issn>1063-6919</issn><issn>1063-6919</issn><isbn>9780769501499</isbn><isbn>0769501494</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNkDtPwzAUhS0eEqV0R0yZYEq413Fs37GqeEmVQAhYI8e5FkZpEuJ24N9TqQxMZzifPh0dIS4RCkSg29XHy2uBRFQYq8mqIzFD0GWuCelYLMhYMJoqQEV08q87E-cpfQHI0kiYiZtlluJm7Djbsv_s4_eOszBMWeIu5N51sZncNg79hTgNrku8-Mu5eL-_e1s95uvnh6fVcp1H1KByhQ20inyonCellIemNbJBYBvIGqnb1leSpWnbEqQMiBJspRtm5zhoV87F9cE7TsN-S9rWm5g8d53redilWhqsUGq9B68OYGTmepzixk0_9eGL8hci9U9Y</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Mendonca, P.R.S.</creator><creator>Cipolla, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1999</creationdate><title>A simple technique for self-calibration</title><author>Mendonca, P.R.S. ; Cipolla, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1604-41b0d49cf5ac9444c0bd72b10e8f98726ddc52e27dd3022f1120856beeaaef6a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Calibration</topic><topic>Cameras</topic><topic>Closed-form solution</topic><topic>Computer vision</topic><topic>Cost function</topic><topic>Image sequences</topic><topic>Layout</topic><topic>Sufficient conditions</topic><topic>Tensile stress</topic><topic>Transmission line matrix methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Mendonca, P.R.S.</creatorcontrib><creatorcontrib>Cipolla, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mendonca, P.R.S.</au><au>Cipolla, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A simple technique for self-calibration</atitle><btitle>Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>1999</date><risdate>1999</risdate><volume>1</volume><spage>500</spage><epage>505 Vol. 1</epage><pages>500-505 Vol. 1</pages><issn>1063-6919</issn><eissn>1063-6919</eissn><isbn>9780769501499</isbn><isbn>0769501494</isbn><abstract>This paper introduces an extension of Hartley's self-calibration technique based on properties of the essential matrix, allowing for the stable computation of varying focal lengths and principal point. It is well known that the three singular values of an essential must satisfy two conditions: one of them must be zero and the other two must be identical. An essential matrix is obtained from the fundamental matrix by a transformation involving the intrinsic parameters of the pair of cameras associated with the two views. Thus, constraints on the essential matrix can be translated into constraints on the intrinsic parameters of the pair of cameras. This allows for a search in the space of intrinsic parameters of the cameras in order to minimize a cost function related to the constraints. This approach is shown to be simpler than other methods, with comparable accuracy in the results. Another advantage of the technique is that it does not require as input a consistent set of weakly calibrated camera matrices (as defined by Harley) for the whole image sequence, i.e. a set of cameras consistent with the correspondences and known up to a projective transformation.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.1999.786984</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, Vol.1, p.500-505 Vol. 1 |
issn | 1063-6919 1063-6919 |
language | eng |
recordid | cdi_proquest_miscellaneous_27151266 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Calibration Cameras Closed-form solution Computer vision Cost function Image sequences Layout Sufficient conditions Tensile stress Transmission line matrix methods |
title | A simple technique for self-calibration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20simple%20technique%20for%20self-calibration&rft.btitle=Proceedings%20of%20the%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Mendonca,%20P.R.S.&rft.date=1999&rft.volume=1&rft.spage=500&rft.epage=505%20Vol.%201&rft.pages=500-505%20Vol.%201&rft.issn=1063-6919&rft.eissn=1063-6919&rft.isbn=9780769501499&rft.isbn_list=0769501494&rft_id=info:doi/10.1109/CVPR.1999.786984&rft_dat=%3Cproquest_6IE%3E27151266%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1604-41b0d49cf5ac9444c0bd72b10e8f98726ddc52e27dd3022f1120856beeaaef6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27151266&rft_id=info:pmid/&rft_ieee_id=786984&rfr_iscdi=true |