Loading…
Spin–orbit induced magnetic phenomena in bulk metals and their surfaces and interfaces
First-principles electronic structure studies based on local spin density functional theory and performed on extremely complex simulations of ever increasingly realistic systems, play a very important role in explaining and predicting surface and interface magnetism. This review deals with what is a...
Saved in:
Published in: | Journal of magnetism and magnetic materials 1999-10, Vol.200 (1), p.498-514 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | First-principles electronic structure studies based on local spin density functional theory and performed on extremely complex simulations of ever increasingly realistic systems, play a very important role in explaining and predicting surface and interface magnetism. This review deals with what is a major issue for first-principles theory, namely the theoretical/computational treatment of the weak spin–orbit coupling in magnetic transition metals and their alloys and its important physical consequences: magneto-crystalline anisotropy, magnetostriction, magneto-optical Kerr effects and X-ray magnetic circular dichroism. As is demonstrated, extensive first-principles calculations and model analyses now provide simple physical insights and guidelines to search for new magnetic recording and sensor materials. |
---|---|
ISSN: | 0304-8853 |
DOI: | 10.1016/S0304-8853(99)00351-0 |