Loading…
Iron reducing sludge as a source of electroactive bacteria: assessing iron reduction in biofilm bacteria, planktonic cells and isolates from a microbial fuel cell
In this study, bacteria from a microbial fuel cell (MFC) and isolates were evaluated on their Fe 3+ reduction capability at different concentrations of iron using acetate as the sole source of carbon. The results demonstrated that the planktonic cells can reach an iron reduction up to 60% at 27 mmol...
Saved in:
Published in: | Archives of microbiology 2022-10, Vol.204 (10), p.632-632, Article 632 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c282t-9b5cd27cf8b1077ae07efc3e6c0a23f0d66432236433d0b6e9293d7e63e91d5e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c282t-9b5cd27cf8b1077ae07efc3e6c0a23f0d66432236433d0b6e9293d7e63e91d5e3 |
container_end_page | 632 |
container_issue | 10 |
container_start_page | 632 |
container_title | Archives of microbiology |
container_volume | 204 |
creator | González-Paz, José Roberto Becerril-Varela, Karina Guerrero-Barajas, Claudia |
description | In this study, bacteria from a microbial fuel cell (MFC) and isolates were evaluated on their Fe
3+
reduction capability at different concentrations of iron using acetate as the sole source of carbon. The results demonstrated that the planktonic cells can reach an iron reduction up to 60% at 27 mmol Fe
3+
.
Azospira oryzae
(
µ
0.89 ± 0.27 d
−1
) and
Cupriavidus metallidurans
CH34 (
µ
2.34 ± 0.81 d
−1
) presented 55 and 62% of Fe
3+
reduction, respectively, at 16 mmol l
−1
.
Enterobacter bugandensis
(
µ
0.4 ± 0.01 d
−1
) 40% Fe
3+
at 27 mmol l
−1
,
Citrobacter freundii
ATCC 8090 (
µ
0.23 ± 0.05 d
−1
) and
Citrobacter murliniae
CDC2970-59 (
µ
0.34 ± 0.02 d
−1
) reduced Fe
3+
in ~ 50%, at 55 mmol l
−1
. This is the first report on these bacteria on a percentage of iron reduction. These results may be useful for anode design to contribute to a higher energy generation in MFCs. |
doi_str_mv | 10.1007/s00203-022-03253-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2715792234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715619522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-9b5cd27cf8b1077ae07efc3e6c0a23f0d66432236433d0b6e9293d7e63e91d5e3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EEsu2L8DJEhcOpIztJk64oarQSpW4FKk3y3HGKxfHXjwJEq_Dk-LdRUXiwMVjS9__z3h-xl4LuBAA-j0BSFANSNmAkq1qumdsIy5VfWr58JxtQIFs-kGpl-wV0SOAkH3fb9iv25ITLzitLqQdp7hOO-SWuOWU1-KQZ88xoltKtm4JP5CPtWIJ9kPFCIkOuvDksoR6C4mPIfsQ5yf6Hd9Hm74tOQXHHcZYW6SJB8rRLkjclzzXpnNwJY_BRu5XjEfwjL3wNhKe_6lb9vXT9f3VTXP35fPt1ce7xsleLs0wtm6S2vl-FKC1RdDoncLOgZXKw9R1dR9S1VNNMHY4yEFNGjuFg5haVFv29uS7L_n7irSYOdBhAJswr2SkFq0eqsNlRd_8gz7WZaU63ZHqxNBWbsvkiapfIirozb6E2ZafRoA5xGZOsZkamznGZroqUicRVTjtsPy1_o_qN0TnnRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715619522</pqid></control><display><type>article</type><title>Iron reducing sludge as a source of electroactive bacteria: assessing iron reduction in biofilm bacteria, planktonic cells and isolates from a microbial fuel cell</title><source>Springer Link</source><creator>González-Paz, José Roberto ; Becerril-Varela, Karina ; Guerrero-Barajas, Claudia</creator><creatorcontrib>González-Paz, José Roberto ; Becerril-Varela, Karina ; Guerrero-Barajas, Claudia</creatorcontrib><description>In this study, bacteria from a microbial fuel cell (MFC) and isolates were evaluated on their Fe
3+
reduction capability at different concentrations of iron using acetate as the sole source of carbon. The results demonstrated that the planktonic cells can reach an iron reduction up to 60% at 27 mmol Fe
3+
.
Azospira oryzae
(
µ
0.89 ± 0.27 d
−1
) and
Cupriavidus metallidurans
CH34 (
µ
2.34 ± 0.81 d
−1
) presented 55 and 62% of Fe
3+
reduction, respectively, at 16 mmol l
−1
.
Enterobacter bugandensis
(
µ
0.4 ± 0.01 d
−1
) 40% Fe
3+
at 27 mmol l
−1
,
Citrobacter freundii
ATCC 8090 (
µ
0.23 ± 0.05 d
−1
) and
Citrobacter murliniae
CDC2970-59 (
µ
0.34 ± 0.02 d
−1
) reduced Fe
3+
in ~ 50%, at 55 mmol l
−1
. This is the first report on these bacteria on a percentage of iron reduction. These results may be useful for anode design to contribute to a higher energy generation in MFCs.</description><identifier>ISSN: 0302-8933</identifier><identifier>EISSN: 1432-072X</identifier><identifier>DOI: 10.1007/s00203-022-03253-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetic acid ; Archives & records ; Bacteria ; Biochemical fuel cells ; Biochemistry ; Biofilms ; Biomass ; Biomedical and Life Sciences ; Biotechnology ; Cell Biology ; Citrobacter ; Dietary minerals ; Ecology ; Electrodes ; Experiments ; Fuel cells ; Fuel technology ; Iron ; Life Sciences ; Microbial Ecology ; Microbiology ; Microorganisms ; Original Paper ; Planktonic cells ; Sediments ; Sludge</subject><ispartof>Archives of microbiology, 2022-10, Vol.204 (10), p.632-632, Article 632</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-9b5cd27cf8b1077ae07efc3e6c0a23f0d66432236433d0b6e9293d7e63e91d5e3</citedby><cites>FETCH-LOGICAL-c282t-9b5cd27cf8b1077ae07efc3e6c0a23f0d66432236433d0b6e9293d7e63e91d5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>González-Paz, José Roberto</creatorcontrib><creatorcontrib>Becerril-Varela, Karina</creatorcontrib><creatorcontrib>Guerrero-Barajas, Claudia</creatorcontrib><title>Iron reducing sludge as a source of electroactive bacteria: assessing iron reduction in biofilm bacteria, planktonic cells and isolates from a microbial fuel cell</title><title>Archives of microbiology</title><addtitle>Arch Microbiol</addtitle><description>In this study, bacteria from a microbial fuel cell (MFC) and isolates were evaluated on their Fe
3+
reduction capability at different concentrations of iron using acetate as the sole source of carbon. The results demonstrated that the planktonic cells can reach an iron reduction up to 60% at 27 mmol Fe
3+
.
Azospira oryzae
(
µ
0.89 ± 0.27 d
−1
) and
Cupriavidus metallidurans
CH34 (
µ
2.34 ± 0.81 d
−1
) presented 55 and 62% of Fe
3+
reduction, respectively, at 16 mmol l
−1
.
Enterobacter bugandensis
(
µ
0.4 ± 0.01 d
−1
) 40% Fe
3+
at 27 mmol l
−1
,
Citrobacter freundii
ATCC 8090 (
µ
0.23 ± 0.05 d
−1
) and
Citrobacter murliniae
CDC2970-59 (
µ
0.34 ± 0.02 d
−1
) reduced Fe
3+
in ~ 50%, at 55 mmol l
−1
. This is the first report on these bacteria on a percentage of iron reduction. These results may be useful for anode design to contribute to a higher energy generation in MFCs.</description><subject>Acetic acid</subject><subject>Archives & records</subject><subject>Bacteria</subject><subject>Biochemical fuel cells</subject><subject>Biochemistry</subject><subject>Biofilms</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Citrobacter</subject><subject>Dietary minerals</subject><subject>Ecology</subject><subject>Electrodes</subject><subject>Experiments</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Iron</subject><subject>Life Sciences</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Original Paper</subject><subject>Planktonic cells</subject><subject>Sediments</subject><subject>Sludge</subject><issn>0302-8933</issn><issn>1432-072X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhi0EEsu2L8DJEhcOpIztJk64oarQSpW4FKk3y3HGKxfHXjwJEq_Dk-LdRUXiwMVjS9__z3h-xl4LuBAA-j0BSFANSNmAkq1qumdsIy5VfWr58JxtQIFs-kGpl-wV0SOAkH3fb9iv25ITLzitLqQdp7hOO-SWuOWU1-KQZ88xoltKtm4JP5CPtWIJ9kPFCIkOuvDksoR6C4mPIfsQ5yf6Hd9Hm74tOQXHHcZYW6SJB8rRLkjclzzXpnNwJY_BRu5XjEfwjL3wNhKe_6lb9vXT9f3VTXP35fPt1ce7xsleLs0wtm6S2vl-FKC1RdDoncLOgZXKw9R1dR9S1VNNMHY4yEFNGjuFg5haVFv29uS7L_n7irSYOdBhAJswr2SkFq0eqsNlRd_8gz7WZaU63ZHqxNBWbsvkiapfIirozb6E2ZafRoA5xGZOsZkamznGZroqUicRVTjtsPy1_o_qN0TnnRQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>González-Paz, José Roberto</creator><creator>Becerril-Varela, Karina</creator><creator>Guerrero-Barajas, Claudia</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20221001</creationdate><title>Iron reducing sludge as a source of electroactive bacteria: assessing iron reduction in biofilm bacteria, planktonic cells and isolates from a microbial fuel cell</title><author>González-Paz, José Roberto ; Becerril-Varela, Karina ; Guerrero-Barajas, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-9b5cd27cf8b1077ae07efc3e6c0a23f0d66432236433d0b6e9293d7e63e91d5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetic acid</topic><topic>Archives & records</topic><topic>Bacteria</topic><topic>Biochemical fuel cells</topic><topic>Biochemistry</topic><topic>Biofilms</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Citrobacter</topic><topic>Dietary minerals</topic><topic>Ecology</topic><topic>Electrodes</topic><topic>Experiments</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Iron</topic><topic>Life Sciences</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Original Paper</topic><topic>Planktonic cells</topic><topic>Sediments</topic><topic>Sludge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Paz, José Roberto</creatorcontrib><creatorcontrib>Becerril-Varela, Karina</creatorcontrib><creatorcontrib>Guerrero-Barajas, Claudia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Paz, José Roberto</au><au>Becerril-Varela, Karina</au><au>Guerrero-Barajas, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron reducing sludge as a source of electroactive bacteria: assessing iron reduction in biofilm bacteria, planktonic cells and isolates from a microbial fuel cell</atitle><jtitle>Archives of microbiology</jtitle><stitle>Arch Microbiol</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>204</volume><issue>10</issue><spage>632</spage><epage>632</epage><pages>632-632</pages><artnum>632</artnum><issn>0302-8933</issn><eissn>1432-072X</eissn><abstract>In this study, bacteria from a microbial fuel cell (MFC) and isolates were evaluated on their Fe
3+
reduction capability at different concentrations of iron using acetate as the sole source of carbon. The results demonstrated that the planktonic cells can reach an iron reduction up to 60% at 27 mmol Fe
3+
.
Azospira oryzae
(
µ
0.89 ± 0.27 d
−1
) and
Cupriavidus metallidurans
CH34 (
µ
2.34 ± 0.81 d
−1
) presented 55 and 62% of Fe
3+
reduction, respectively, at 16 mmol l
−1
.
Enterobacter bugandensis
(
µ
0.4 ± 0.01 d
−1
) 40% Fe
3+
at 27 mmol l
−1
,
Citrobacter freundii
ATCC 8090 (
µ
0.23 ± 0.05 d
−1
) and
Citrobacter murliniae
CDC2970-59 (
µ
0.34 ± 0.02 d
−1
) reduced Fe
3+
in ~ 50%, at 55 mmol l
−1
. This is the first report on these bacteria on a percentage of iron reduction. These results may be useful for anode design to contribute to a higher energy generation in MFCs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00203-022-03253-6</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-8933 |
ispartof | Archives of microbiology, 2022-10, Vol.204 (10), p.632-632, Article 632 |
issn | 0302-8933 1432-072X |
language | eng |
recordid | cdi_proquest_miscellaneous_2715792234 |
source | Springer Link |
subjects | Acetic acid Archives & records Bacteria Biochemical fuel cells Biochemistry Biofilms Biomass Biomedical and Life Sciences Biotechnology Cell Biology Citrobacter Dietary minerals Ecology Electrodes Experiments Fuel cells Fuel technology Iron Life Sciences Microbial Ecology Microbiology Microorganisms Original Paper Planktonic cells Sediments Sludge |
title | Iron reducing sludge as a source of electroactive bacteria: assessing iron reduction in biofilm bacteria, planktonic cells and isolates from a microbial fuel cell |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A55%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron%20reducing%20sludge%20as%20a%20source%20of%20electroactive%20bacteria:%20assessing%20iron%20reduction%20in%20biofilm%20bacteria,%20planktonic%20cells%20and%20isolates%20from%20a%20microbial%20fuel%20cell&rft.jtitle=Archives%20of%20microbiology&rft.au=Gonz%C3%A1lez-Paz,%20Jos%C3%A9%20Roberto&rft.date=2022-10-01&rft.volume=204&rft.issue=10&rft.spage=632&rft.epage=632&rft.pages=632-632&rft.artnum=632&rft.issn=0302-8933&rft.eissn=1432-072X&rft_id=info:doi/10.1007/s00203-022-03253-6&rft_dat=%3Cproquest_cross%3E2715619522%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c282t-9b5cd27cf8b1077ae07efc3e6c0a23f0d66432236433d0b6e9293d7e63e91d5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2715619522&rft_id=info:pmid/&rfr_iscdi=true |