Loading…

Iron reducing sludge as a source of electroactive bacteria: assessing iron reduction in biofilm bacteria, planktonic cells and isolates from a microbial fuel cell

In this study, bacteria from a microbial fuel cell (MFC) and isolates were evaluated on their Fe 3+ reduction capability at different concentrations of iron using acetate as the sole source of carbon. The results demonstrated that the planktonic cells can reach an iron reduction up to 60% at 27 mmol...

Full description

Saved in:
Bibliographic Details
Published in:Archives of microbiology 2022-10, Vol.204 (10), p.632-632, Article 632
Main Authors: González-Paz, José Roberto, Becerril-Varela, Karina, Guerrero-Barajas, Claudia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c282t-9b5cd27cf8b1077ae07efc3e6c0a23f0d66432236433d0b6e9293d7e63e91d5e3
cites cdi_FETCH-LOGICAL-c282t-9b5cd27cf8b1077ae07efc3e6c0a23f0d66432236433d0b6e9293d7e63e91d5e3
container_end_page 632
container_issue 10
container_start_page 632
container_title Archives of microbiology
container_volume 204
creator González-Paz, José Roberto
Becerril-Varela, Karina
Guerrero-Barajas, Claudia
description In this study, bacteria from a microbial fuel cell (MFC) and isolates were evaluated on their Fe 3+ reduction capability at different concentrations of iron using acetate as the sole source of carbon. The results demonstrated that the planktonic cells can reach an iron reduction up to 60% at 27 mmol Fe 3+ . Azospira oryzae ( µ 0.89 ± 0.27 d −1 ) and Cupriavidus metallidurans CH34 ( µ 2.34 ± 0.81 d −1 ) presented 55 and 62% of Fe 3+ reduction, respectively, at 16 mmol l −1 . Enterobacter bugandensis ( µ 0.4 ± 0.01 d −1 ) 40% Fe 3+ at 27 mmol l −1 , Citrobacter freundii ATCC 8090 ( µ 0.23 ± 0.05 d −1 ) and Citrobacter murliniae CDC2970-59 ( µ 0.34 ± 0.02 d −1 ) reduced Fe 3+ in ~ 50%, at 55 mmol l −1 . This is the first report on these bacteria on a percentage of iron reduction. These results may be useful for anode design to contribute to a higher energy generation in MFCs.
doi_str_mv 10.1007/s00203-022-03253-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2715792234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715619522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-9b5cd27cf8b1077ae07efc3e6c0a23f0d66432236433d0b6e9293d7e63e91d5e3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EEsu2L8DJEhcOpIztJk64oarQSpW4FKk3y3HGKxfHXjwJEq_Dk-LdRUXiwMVjS9__z3h-xl4LuBAA-j0BSFANSNmAkq1qumdsIy5VfWr58JxtQIFs-kGpl-wV0SOAkH3fb9iv25ITLzitLqQdp7hOO-SWuOWU1-KQZ88xoltKtm4JP5CPtWIJ9kPFCIkOuvDksoR6C4mPIfsQ5yf6Hd9Hm74tOQXHHcZYW6SJB8rRLkjclzzXpnNwJY_BRu5XjEfwjL3wNhKe_6lb9vXT9f3VTXP35fPt1ce7xsleLs0wtm6S2vl-FKC1RdDoncLOgZXKw9R1dR9S1VNNMHY4yEFNGjuFg5haVFv29uS7L_n7irSYOdBhAJswr2SkFq0eqsNlRd_8gz7WZaU63ZHqxNBWbsvkiapfIirozb6E2ZafRoA5xGZOsZkamznGZroqUicRVTjtsPy1_o_qN0TnnRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715619522</pqid></control><display><type>article</type><title>Iron reducing sludge as a source of electroactive bacteria: assessing iron reduction in biofilm bacteria, planktonic cells and isolates from a microbial fuel cell</title><source>Springer Link</source><creator>González-Paz, José Roberto ; Becerril-Varela, Karina ; Guerrero-Barajas, Claudia</creator><creatorcontrib>González-Paz, José Roberto ; Becerril-Varela, Karina ; Guerrero-Barajas, Claudia</creatorcontrib><description>In this study, bacteria from a microbial fuel cell (MFC) and isolates were evaluated on their Fe 3+ reduction capability at different concentrations of iron using acetate as the sole source of carbon. The results demonstrated that the planktonic cells can reach an iron reduction up to 60% at 27 mmol Fe 3+ . Azospira oryzae ( µ 0.89 ± 0.27 d −1 ) and Cupriavidus metallidurans CH34 ( µ 2.34 ± 0.81 d −1 ) presented 55 and 62% of Fe 3+ reduction, respectively, at 16 mmol l −1 . Enterobacter bugandensis ( µ 0.4 ± 0.01 d −1 ) 40% Fe 3+ at 27 mmol l −1 , Citrobacter freundii ATCC 8090 ( µ 0.23 ± 0.05 d −1 ) and Citrobacter murliniae CDC2970-59 ( µ 0.34 ± 0.02 d −1 ) reduced Fe 3+ in ~ 50%, at 55 mmol l −1 . This is the first report on these bacteria on a percentage of iron reduction. These results may be useful for anode design to contribute to a higher energy generation in MFCs.</description><identifier>ISSN: 0302-8933</identifier><identifier>EISSN: 1432-072X</identifier><identifier>DOI: 10.1007/s00203-022-03253-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetic acid ; Archives &amp; records ; Bacteria ; Biochemical fuel cells ; Biochemistry ; Biofilms ; Biomass ; Biomedical and Life Sciences ; Biotechnology ; Cell Biology ; Citrobacter ; Dietary minerals ; Ecology ; Electrodes ; Experiments ; Fuel cells ; Fuel technology ; Iron ; Life Sciences ; Microbial Ecology ; Microbiology ; Microorganisms ; Original Paper ; Planktonic cells ; Sediments ; Sludge</subject><ispartof>Archives of microbiology, 2022-10, Vol.204 (10), p.632-632, Article 632</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-9b5cd27cf8b1077ae07efc3e6c0a23f0d66432236433d0b6e9293d7e63e91d5e3</citedby><cites>FETCH-LOGICAL-c282t-9b5cd27cf8b1077ae07efc3e6c0a23f0d66432236433d0b6e9293d7e63e91d5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>González-Paz, José Roberto</creatorcontrib><creatorcontrib>Becerril-Varela, Karina</creatorcontrib><creatorcontrib>Guerrero-Barajas, Claudia</creatorcontrib><title>Iron reducing sludge as a source of electroactive bacteria: assessing iron reduction in biofilm bacteria, planktonic cells and isolates from a microbial fuel cell</title><title>Archives of microbiology</title><addtitle>Arch Microbiol</addtitle><description>In this study, bacteria from a microbial fuel cell (MFC) and isolates were evaluated on their Fe 3+ reduction capability at different concentrations of iron using acetate as the sole source of carbon. The results demonstrated that the planktonic cells can reach an iron reduction up to 60% at 27 mmol Fe 3+ . Azospira oryzae ( µ 0.89 ± 0.27 d −1 ) and Cupriavidus metallidurans CH34 ( µ 2.34 ± 0.81 d −1 ) presented 55 and 62% of Fe 3+ reduction, respectively, at 16 mmol l −1 . Enterobacter bugandensis ( µ 0.4 ± 0.01 d −1 ) 40% Fe 3+ at 27 mmol l −1 , Citrobacter freundii ATCC 8090 ( µ 0.23 ± 0.05 d −1 ) and Citrobacter murliniae CDC2970-59 ( µ 0.34 ± 0.02 d −1 ) reduced Fe 3+ in ~ 50%, at 55 mmol l −1 . This is the first report on these bacteria on a percentage of iron reduction. These results may be useful for anode design to contribute to a higher energy generation in MFCs.</description><subject>Acetic acid</subject><subject>Archives &amp; records</subject><subject>Bacteria</subject><subject>Biochemical fuel cells</subject><subject>Biochemistry</subject><subject>Biofilms</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Citrobacter</subject><subject>Dietary minerals</subject><subject>Ecology</subject><subject>Electrodes</subject><subject>Experiments</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Iron</subject><subject>Life Sciences</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Original Paper</subject><subject>Planktonic cells</subject><subject>Sediments</subject><subject>Sludge</subject><issn>0302-8933</issn><issn>1432-072X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhi0EEsu2L8DJEhcOpIztJk64oarQSpW4FKk3y3HGKxfHXjwJEq_Dk-LdRUXiwMVjS9__z3h-xl4LuBAA-j0BSFANSNmAkq1qumdsIy5VfWr58JxtQIFs-kGpl-wV0SOAkH3fb9iv25ITLzitLqQdp7hOO-SWuOWU1-KQZ88xoltKtm4JP5CPtWIJ9kPFCIkOuvDksoR6C4mPIfsQ5yf6Hd9Hm74tOQXHHcZYW6SJB8rRLkjclzzXpnNwJY_BRu5XjEfwjL3wNhKe_6lb9vXT9f3VTXP35fPt1ce7xsleLs0wtm6S2vl-FKC1RdDoncLOgZXKw9R1dR9S1VNNMHY4yEFNGjuFg5haVFv29uS7L_n7irSYOdBhAJswr2SkFq0eqsNlRd_8gz7WZaU63ZHqxNBWbsvkiapfIirozb6E2ZafRoA5xGZOsZkamznGZroqUicRVTjtsPy1_o_qN0TnnRQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>González-Paz, José Roberto</creator><creator>Becerril-Varela, Karina</creator><creator>Guerrero-Barajas, Claudia</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20221001</creationdate><title>Iron reducing sludge as a source of electroactive bacteria: assessing iron reduction in biofilm bacteria, planktonic cells and isolates from a microbial fuel cell</title><author>González-Paz, José Roberto ; Becerril-Varela, Karina ; Guerrero-Barajas, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-9b5cd27cf8b1077ae07efc3e6c0a23f0d66432236433d0b6e9293d7e63e91d5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetic acid</topic><topic>Archives &amp; records</topic><topic>Bacteria</topic><topic>Biochemical fuel cells</topic><topic>Biochemistry</topic><topic>Biofilms</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Citrobacter</topic><topic>Dietary minerals</topic><topic>Ecology</topic><topic>Electrodes</topic><topic>Experiments</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Iron</topic><topic>Life Sciences</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Original Paper</topic><topic>Planktonic cells</topic><topic>Sediments</topic><topic>Sludge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Paz, José Roberto</creatorcontrib><creatorcontrib>Becerril-Varela, Karina</creatorcontrib><creatorcontrib>Guerrero-Barajas, Claudia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Paz, José Roberto</au><au>Becerril-Varela, Karina</au><au>Guerrero-Barajas, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron reducing sludge as a source of electroactive bacteria: assessing iron reduction in biofilm bacteria, planktonic cells and isolates from a microbial fuel cell</atitle><jtitle>Archives of microbiology</jtitle><stitle>Arch Microbiol</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>204</volume><issue>10</issue><spage>632</spage><epage>632</epage><pages>632-632</pages><artnum>632</artnum><issn>0302-8933</issn><eissn>1432-072X</eissn><abstract>In this study, bacteria from a microbial fuel cell (MFC) and isolates were evaluated on their Fe 3+ reduction capability at different concentrations of iron using acetate as the sole source of carbon. The results demonstrated that the planktonic cells can reach an iron reduction up to 60% at 27 mmol Fe 3+ . Azospira oryzae ( µ 0.89 ± 0.27 d −1 ) and Cupriavidus metallidurans CH34 ( µ 2.34 ± 0.81 d −1 ) presented 55 and 62% of Fe 3+ reduction, respectively, at 16 mmol l −1 . Enterobacter bugandensis ( µ 0.4 ± 0.01 d −1 ) 40% Fe 3+ at 27 mmol l −1 , Citrobacter freundii ATCC 8090 ( µ 0.23 ± 0.05 d −1 ) and Citrobacter murliniae CDC2970-59 ( µ 0.34 ± 0.02 d −1 ) reduced Fe 3+ in ~ 50%, at 55 mmol l −1 . This is the first report on these bacteria on a percentage of iron reduction. These results may be useful for anode design to contribute to a higher energy generation in MFCs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00203-022-03253-6</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-8933
ispartof Archives of microbiology, 2022-10, Vol.204 (10), p.632-632, Article 632
issn 0302-8933
1432-072X
language eng
recordid cdi_proquest_miscellaneous_2715792234
source Springer Link
subjects Acetic acid
Archives & records
Bacteria
Biochemical fuel cells
Biochemistry
Biofilms
Biomass
Biomedical and Life Sciences
Biotechnology
Cell Biology
Citrobacter
Dietary minerals
Ecology
Electrodes
Experiments
Fuel cells
Fuel technology
Iron
Life Sciences
Microbial Ecology
Microbiology
Microorganisms
Original Paper
Planktonic cells
Sediments
Sludge
title Iron reducing sludge as a source of electroactive bacteria: assessing iron reduction in biofilm bacteria, planktonic cells and isolates from a microbial fuel cell
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A55%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron%20reducing%20sludge%20as%20a%20source%20of%20electroactive%20bacteria:%20assessing%20iron%20reduction%20in%20biofilm%20bacteria,%20planktonic%20cells%20and%20isolates%20from%20a%20microbial%20fuel%20cell&rft.jtitle=Archives%20of%20microbiology&rft.au=Gonz%C3%A1lez-Paz,%20Jos%C3%A9%20Roberto&rft.date=2022-10-01&rft.volume=204&rft.issue=10&rft.spage=632&rft.epage=632&rft.pages=632-632&rft.artnum=632&rft.issn=0302-8933&rft.eissn=1432-072X&rft_id=info:doi/10.1007/s00203-022-03253-6&rft_dat=%3Cproquest_cross%3E2715619522%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c282t-9b5cd27cf8b1077ae07efc3e6c0a23f0d66432236433d0b6e9293d7e63e91d5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2715619522&rft_id=info:pmid/&rfr_iscdi=true