Loading…

Multi-scale analysis of radio-frequency performance of 2D-material based field-effect transistors

Two-dimensional materials (2DMs) are a promising alternative to complement and upgrade high-frequency electronics. However, in order to boost their adoption, the availability of numerical tools and physically-based models able to support the experimental activities and to provide them with useful gu...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale advances 2021-04, Vol.3 (8), p.2377-2382
Main Authors: Toral-Lopez, A, Pasadas, F, Marin, E. G, Medina-Rull, A, Gonzalez-Medina, J. M, Ruiz, F. G, Jiménez, D, Godoy, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two-dimensional materials (2DMs) are a promising alternative to complement and upgrade high-frequency electronics. However, in order to boost their adoption, the availability of numerical tools and physically-based models able to support the experimental activities and to provide them with useful guidelines becomes essential. In this context, we propose a theoretical approach that combines numerical simulations and small-signal modeling to analyze 2DM-based FETs for radio-frequency applications. This multi-scale scheme takes into account non-idealities, such as interface traps, carrier velocity saturation, or short channel effects, by means of self-consistent physics-based numerical calculations that later feed the circuit level via a small-signal model based on the dynamic intrinsic capacitances of the device. At the circuit stage, the possibilities range from the evaluation of the performance of a single device to the design of complex circuits combining multiple transistors. In this work, we validate our scheme against experimental results and exemplify its use and capability assessing the impact of the channel scaling on the performance of MoS 2 -based FETs targeting RF applications. This multi-scale approach combines small-signal modeling with numerical simulations to study 2D-FETs. It is introduced in the context of performance protection of MoS 2 devices with different gate lengths and low contact resistances.
ISSN:2516-0230
2516-0230
DOI:10.1039/d0na00953a