Loading…

Low-loss, high-voltage 6H-SiC epitaxial p-i-n diode

The p-i-n diodes were fabricated using 31 /spl mu/m thick n/sup -/- and p-type 6H-SiC epilayers grown by horizontal cold-wall chemical vapor deposition (CVD) with nitrogen and aluminum doping, respectively. The diode exhibited a very high breakdown voltage of 4.2 kV with a low on-resistance of 4.6 m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2002-01, Vol.49 (1), p.150-154
Main Authors: Fujihira, K., Tamura, S., Kimoto, T., Matsunami, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The p-i-n diodes were fabricated using 31 /spl mu/m thick n/sup -/- and p-type 6H-SiC epilayers grown by horizontal cold-wall chemical vapor deposition (CVD) with nitrogen and aluminum doping, respectively. The diode exhibited a very high breakdown voltage of 4.2 kV with a low on-resistance of 4.6 m/spl Omega/cm/sup 2/. This on-resistance is lower (by a factor of five) than that of a Si p-i-n diode with a similar breakdown voltage. The leakage current density was substantially lower even at high temperatures. The fabricated SiC p-i-n diode showed fast switching with a turn-off time of 0.18 /spl mu/s at 300 K. The carrier lifetime was estimated to be 0.64 /spl mu/s at 300 K, and more than 5.20 /spl mu/s at 500 K. Various characteristics of SiC p-i-n diodes which have an advantage of lower power dissipation owing to conductivity modulation were investigated.
ISSN:0018-9383
1557-9646
DOI:10.1109/16.974762