Loading…
Toward n‑Alkane Hydroisomerization Reactions: High-Performance Pt–Al2O3/SAPO-11 Single-Atom Catalysts with Nanoscale Separated Metal-Acid Centers and Ultralow Platinum Content
Long-chain n-alkane hydroisomerization reaction plays a vital role in petrochemical and coal chemical industries, which could produce high-quality hydrocarbon fuels and lubricant base oils for modern transportation and mechanical drive. However, minimizing precious metal usage while maintaining the...
Saved in:
Published in: | ACS applied materials & interfaces 2022-10, Vol.14 (39), p.44377-44388 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Long-chain n-alkane hydroisomerization reaction plays a vital role in petrochemical and coal chemical industries, which could produce high-quality hydrocarbon fuels and lubricant base oils for modern transportation and mechanical drive. However, minimizing precious metal usage while maintaining the catalyst performance remains a great challenge. Herein, a novel bifunctional catalyst toward n-alkane hydroisomerization reactions, Pt–Al2O3/SAPO-11 (Pt-A/S11) featuring nanoscale separated metal-acid active centers has been synthesized via a simple two-step procedure. In detail, Pt species was first loaded on the nanometer-sized alumina matrices through an incipient wetness impregnation method and then mixed with SAPO-11 molecular sieve to form the composite catalyst. Importantly, 0.015Pt-A/S11 catalyst with the ever-reported lowest Pt loading amount of 0.015 wt % exhibits an extraordinarily high isomer yield of 85.8% compared to previous published results and the traditional Pt-SAPO-11/Al2O3 (Pt–S11/A) catalyst accompanying with the direct contact between metal and acid sites (65.6%). It has been confirmed that the Pt species in 0.015Pt-A/S11 samples exist in single-atom form, leading to an excellent hydroisomerization performance. The possible reaction processes have been discussed to elucidate the exemplary catalytic performance of the synthesized Pt-A/S11 catalysts with nanoscale intimacy of metal-acid sites. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.2c11607 |