Loading…

Discordant population structure among rhizobium divided genomes and their legume hosts

Symbiosis often occurs between partners with distinct life history characteristics and dispersal mechanisms. Many bacterial symbionts have genomes comprising multiple replicons with distinct rates of evolution and horizontal transmission. Such differences might drive differences in population struct...

Full description

Saved in:
Bibliographic Details
Published in:Molecular ecology 2023-05, Vol.32 (10), p.2646-2659
Main Authors: Riley, Alex B., Grillo, Michael A., Epstein, Brendan, Tiffin, Peter, Heath, Katy D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3884-ca3853740017705f03ed8aa54babffd383528dc94ce241fbe938f345717641363
cites cdi_FETCH-LOGICAL-c3884-ca3853740017705f03ed8aa54babffd383528dc94ce241fbe938f345717641363
container_end_page 2659
container_issue 10
container_start_page 2646
container_title Molecular ecology
container_volume 32
creator Riley, Alex B.
Grillo, Michael A.
Epstein, Brendan
Tiffin, Peter
Heath, Katy D.
description Symbiosis often occurs between partners with distinct life history characteristics and dispersal mechanisms. Many bacterial symbionts have genomes comprising multiple replicons with distinct rates of evolution and horizontal transmission. Such differences might drive differences in population structure between hosts and symbionts and among the elements of the divided genomes of bacterial symbionts. These differences might, in turn, shape the evolution of symbiotic interactions and bacterial evolution. Here we use whole genome resequencing of a hierarchically structured sample of 191 strains of Sinorhizobium meliloti collected from 21 locations in southern Europe to characterize population structures of this bacterial symbiont, which forms a root nodule symbiosis with the host plant Medicago truncatula. S. meliloti genomes showed high local (within‐site) variation and little isolation by distance. This was particularly true for the two symbiosis elements, pSymA and pSymB, which have population structures that are similar to each other, but distinct from both the bacterial chromosome and the host plant. Given limited recombination on the chromosome, compared to the symbiosis elements, distinct population structures may result from differences in effective gene flow. Alternatively, positive or purifying selection, with little recombination, may explain distinct geographical patterns at the chromosome. Discordant population structure between hosts and symbionts indicates that geographically and genetically distinct host populations in different parts of the range might interact with genetically similar symbionts, potentially minimizing local specialization.
doi_str_mv 10.1111/mec.16704
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2718640532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718640532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-ca3853740017705f03ed8aa54babffd383528dc94ce241fbe938f345717641363</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOj4W_gEJuNFFNWmSNl3K-ATFjYq7kDa3M5G2GZNG0V9vdNSF4N3czcfhnA-hXUqOaLrjHpojWpSEr6AJZYXI8oo_rqIJqYo8o0SyDbQZwhMhlOVCrKMNVtCClqyaoIdTGxrnjR5GvHCL2OnRugGH0cdmjB6w7t0ww35u311tY4-NfbEGDJ7B4HoIWA8Gj3OwHncwiz3guQtj2EZrre4C7Hz_LXR_fnY3vcyuby-upifXWcOk5FmjmRSs5KlZWRLREgZGai14reu2NUwykUvTVLyBnNO2horJlnFR0rLgaSnbQgfL3IV3zxHCqPq0B7pOD-BiUHlJZcGJYHlC9_-gTy76IbVTuUwWBSXkkzpcUo13IXho1cLbXvs3RYn6lK2SbPUlO7F734mx7sH8kj92E3C8BF5tB2__J6mbs-ky8gNasogr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811151002</pqid></control><display><type>article</type><title>Discordant population structure among rhizobium divided genomes and their legume hosts</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Riley, Alex B. ; Grillo, Michael A. ; Epstein, Brendan ; Tiffin, Peter ; Heath, Katy D.</creator><creatorcontrib>Riley, Alex B. ; Grillo, Michael A. ; Epstein, Brendan ; Tiffin, Peter ; Heath, Katy D.</creatorcontrib><description>Symbiosis often occurs between partners with distinct life history characteristics and dispersal mechanisms. Many bacterial symbionts have genomes comprising multiple replicons with distinct rates of evolution and horizontal transmission. Such differences might drive differences in population structure between hosts and symbionts and among the elements of the divided genomes of bacterial symbionts. These differences might, in turn, shape the evolution of symbiotic interactions and bacterial evolution. Here we use whole genome resequencing of a hierarchically structured sample of 191 strains of Sinorhizobium meliloti collected from 21 locations in southern Europe to characterize population structures of this bacterial symbiont, which forms a root nodule symbiosis with the host plant Medicago truncatula. S. meliloti genomes showed high local (within‐site) variation and little isolation by distance. This was particularly true for the two symbiosis elements, pSymA and pSymB, which have population structures that are similar to each other, but distinct from both the bacterial chromosome and the host plant. Given limited recombination on the chromosome, compared to the symbiosis elements, distinct population structures may result from differences in effective gene flow. Alternatively, positive or purifying selection, with little recombination, may explain distinct geographical patterns at the chromosome. Discordant population structure between hosts and symbionts indicates that geographically and genetically distinct host populations in different parts of the range might interact with genetically similar symbionts, potentially minimizing local specialization.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.16704</identifier><identifier>PMID: 36161739</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Alfalfa ; Bacteria ; Chromosomes ; co‐evolution ; Dispersal ; Ensifer ; Evolution ; Gene flow ; Genome, Bacterial - genetics ; Genomes ; horizontal gene transfer ; Host plants ; Legumes ; Life history ; Medicago truncatula - genetics ; Medicago truncatula - microbiology ; MGE ; mutualism ; plasmid ; Population genetics ; Population structure ; Recombination ; Rhizobium - genetics ; Sequence Analysis, DNA ; Sinorhizobium meliloti - genetics ; Symbionts ; Symbiosis ; Symbiosis - genetics</subject><ispartof>Molecular ecology, 2023-05, Vol.32 (10), p.2646-2659</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2022 The Authors. Molecular Ecology published by John Wiley &amp; Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3884-ca3853740017705f03ed8aa54babffd383528dc94ce241fbe938f345717641363</citedby><cites>FETCH-LOGICAL-c3884-ca3853740017705f03ed8aa54babffd383528dc94ce241fbe938f345717641363</cites><orcidid>0000-0001-7083-1588 ; 0000-0003-1975-610X ; 0000-0002-6368-744X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36161739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Riley, Alex B.</creatorcontrib><creatorcontrib>Grillo, Michael A.</creatorcontrib><creatorcontrib>Epstein, Brendan</creatorcontrib><creatorcontrib>Tiffin, Peter</creatorcontrib><creatorcontrib>Heath, Katy D.</creatorcontrib><title>Discordant population structure among rhizobium divided genomes and their legume hosts</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Symbiosis often occurs between partners with distinct life history characteristics and dispersal mechanisms. Many bacterial symbionts have genomes comprising multiple replicons with distinct rates of evolution and horizontal transmission. Such differences might drive differences in population structure between hosts and symbionts and among the elements of the divided genomes of bacterial symbionts. These differences might, in turn, shape the evolution of symbiotic interactions and bacterial evolution. Here we use whole genome resequencing of a hierarchically structured sample of 191 strains of Sinorhizobium meliloti collected from 21 locations in southern Europe to characterize population structures of this bacterial symbiont, which forms a root nodule symbiosis with the host plant Medicago truncatula. S. meliloti genomes showed high local (within‐site) variation and little isolation by distance. This was particularly true for the two symbiosis elements, pSymA and pSymB, which have population structures that are similar to each other, but distinct from both the bacterial chromosome and the host plant. Given limited recombination on the chromosome, compared to the symbiosis elements, distinct population structures may result from differences in effective gene flow. Alternatively, positive or purifying selection, with little recombination, may explain distinct geographical patterns at the chromosome. Discordant population structure between hosts and symbionts indicates that geographically and genetically distinct host populations in different parts of the range might interact with genetically similar symbionts, potentially minimizing local specialization.</description><subject>Alfalfa</subject><subject>Bacteria</subject><subject>Chromosomes</subject><subject>co‐evolution</subject><subject>Dispersal</subject><subject>Ensifer</subject><subject>Evolution</subject><subject>Gene flow</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomes</subject><subject>horizontal gene transfer</subject><subject>Host plants</subject><subject>Legumes</subject><subject>Life history</subject><subject>Medicago truncatula - genetics</subject><subject>Medicago truncatula - microbiology</subject><subject>MGE</subject><subject>mutualism</subject><subject>plasmid</subject><subject>Population genetics</subject><subject>Population structure</subject><subject>Recombination</subject><subject>Rhizobium - genetics</subject><subject>Sequence Analysis, DNA</subject><subject>Sinorhizobium meliloti - genetics</subject><subject>Symbionts</subject><subject>Symbiosis</subject><subject>Symbiosis - genetics</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kEtLxDAUhYMoOj4W_gEJuNFFNWmSNl3K-ATFjYq7kDa3M5G2GZNG0V9vdNSF4N3czcfhnA-hXUqOaLrjHpojWpSEr6AJZYXI8oo_rqIJqYo8o0SyDbQZwhMhlOVCrKMNVtCClqyaoIdTGxrnjR5GvHCL2OnRugGH0cdmjB6w7t0ww35u311tY4-NfbEGDJ7B4HoIWA8Gj3OwHncwiz3guQtj2EZrre4C7Hz_LXR_fnY3vcyuby-upifXWcOk5FmjmRSs5KlZWRLREgZGai14reu2NUwykUvTVLyBnNO2horJlnFR0rLgaSnbQgfL3IV3zxHCqPq0B7pOD-BiUHlJZcGJYHlC9_-gTy76IbVTuUwWBSXkkzpcUo13IXho1cLbXvs3RYn6lK2SbPUlO7F734mx7sH8kj92E3C8BF5tB2__J6mbs-ky8gNasogr</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Riley, Alex B.</creator><creator>Grillo, Michael A.</creator><creator>Epstein, Brendan</creator><creator>Tiffin, Peter</creator><creator>Heath, Katy D.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7083-1588</orcidid><orcidid>https://orcid.org/0000-0003-1975-610X</orcidid><orcidid>https://orcid.org/0000-0002-6368-744X</orcidid></search><sort><creationdate>202305</creationdate><title>Discordant population structure among rhizobium divided genomes and their legume hosts</title><author>Riley, Alex B. ; Grillo, Michael A. ; Epstein, Brendan ; Tiffin, Peter ; Heath, Katy D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-ca3853740017705f03ed8aa54babffd383528dc94ce241fbe938f345717641363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alfalfa</topic><topic>Bacteria</topic><topic>Chromosomes</topic><topic>co‐evolution</topic><topic>Dispersal</topic><topic>Ensifer</topic><topic>Evolution</topic><topic>Gene flow</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomes</topic><topic>horizontal gene transfer</topic><topic>Host plants</topic><topic>Legumes</topic><topic>Life history</topic><topic>Medicago truncatula - genetics</topic><topic>Medicago truncatula - microbiology</topic><topic>MGE</topic><topic>mutualism</topic><topic>plasmid</topic><topic>Population genetics</topic><topic>Population structure</topic><topic>Recombination</topic><topic>Rhizobium - genetics</topic><topic>Sequence Analysis, DNA</topic><topic>Sinorhizobium meliloti - genetics</topic><topic>Symbionts</topic><topic>Symbiosis</topic><topic>Symbiosis - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riley, Alex B.</creatorcontrib><creatorcontrib>Grillo, Michael A.</creatorcontrib><creatorcontrib>Epstein, Brendan</creatorcontrib><creatorcontrib>Tiffin, Peter</creatorcontrib><creatorcontrib>Heath, Katy D.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles(OpenAccess)</collection><collection>Wiley Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riley, Alex B.</au><au>Grillo, Michael A.</au><au>Epstein, Brendan</au><au>Tiffin, Peter</au><au>Heath, Katy D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discordant population structure among rhizobium divided genomes and their legume hosts</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2023-05</date><risdate>2023</risdate><volume>32</volume><issue>10</issue><spage>2646</spage><epage>2659</epage><pages>2646-2659</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Symbiosis often occurs between partners with distinct life history characteristics and dispersal mechanisms. Many bacterial symbionts have genomes comprising multiple replicons with distinct rates of evolution and horizontal transmission. Such differences might drive differences in population structure between hosts and symbionts and among the elements of the divided genomes of bacterial symbionts. These differences might, in turn, shape the evolution of symbiotic interactions and bacterial evolution. Here we use whole genome resequencing of a hierarchically structured sample of 191 strains of Sinorhizobium meliloti collected from 21 locations in southern Europe to characterize population structures of this bacterial symbiont, which forms a root nodule symbiosis with the host plant Medicago truncatula. S. meliloti genomes showed high local (within‐site) variation and little isolation by distance. This was particularly true for the two symbiosis elements, pSymA and pSymB, which have population structures that are similar to each other, but distinct from both the bacterial chromosome and the host plant. Given limited recombination on the chromosome, compared to the symbiosis elements, distinct population structures may result from differences in effective gene flow. Alternatively, positive or purifying selection, with little recombination, may explain distinct geographical patterns at the chromosome. Discordant population structure between hosts and symbionts indicates that geographically and genetically distinct host populations in different parts of the range might interact with genetically similar symbionts, potentially minimizing local specialization.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>36161739</pmid><doi>10.1111/mec.16704</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7083-1588</orcidid><orcidid>https://orcid.org/0000-0003-1975-610X</orcidid><orcidid>https://orcid.org/0000-0002-6368-744X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2023-05, Vol.32 (10), p.2646-2659
issn 0962-1083
1365-294X
language eng
recordid cdi_proquest_miscellaneous_2718640532
source Wiley-Blackwell Read & Publish Collection
subjects Alfalfa
Bacteria
Chromosomes
co‐evolution
Dispersal
Ensifer
Evolution
Gene flow
Genome, Bacterial - genetics
Genomes
horizontal gene transfer
Host plants
Legumes
Life history
Medicago truncatula - genetics
Medicago truncatula - microbiology
MGE
mutualism
plasmid
Population genetics
Population structure
Recombination
Rhizobium - genetics
Sequence Analysis, DNA
Sinorhizobium meliloti - genetics
Symbionts
Symbiosis
Symbiosis - genetics
title Discordant population structure among rhizobium divided genomes and their legume hosts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A25%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discordant%20population%20structure%20among%20rhizobium%20divided%20genomes%20and%20their%20legume%20hosts&rft.jtitle=Molecular%20ecology&rft.au=Riley,%20Alex%20B.&rft.date=2023-05&rft.volume=32&rft.issue=10&rft.spage=2646&rft.epage=2659&rft.pages=2646-2659&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.16704&rft_dat=%3Cproquest_cross%3E2718640532%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3884-ca3853740017705f03ed8aa54babffd383528dc94ce241fbe938f345717641363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2811151002&rft_id=info:pmid/36161739&rfr_iscdi=true