Loading…

Responses of cherry radish to different types of microplastics in the presence of oxytetracycline

Croplands have become a hotspot for antibiotic and microplastic (MP) pollution. However, little is known regarding their combined effects on crops. In this study, the individual and combined effects of oxytetracycline (OTC) and three MPs (i.e., polypropylene (PP), polyamide (PA), and polyvinylchlori...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology and biochemistry 2022-11, Vol.191, p.1-9
Main Authors: Cui, Min, Yu, Songguo, Yu, Yufei, Chen, Xuehai, Li, Jia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Croplands have become a hotspot for antibiotic and microplastic (MP) pollution. However, little is known regarding their combined effects on crops. In this study, the individual and combined effects of oxytetracycline (OTC) and three MPs (i.e., polypropylene (PP), polyamide (PA), and polyvinylchloride (PVC)) on cherry radish were investigated using pot experiments. Individually, OTC (50 mg kg−1), PA (2%, w/w), and PP (2%, w/w) induced negligible effects on cherry radish biomass and the root/shoot ratio. However, PVC (2%, w/w) significantly inhibited cherry radish growth; that is, its shoot and root fresh weight decreased by 46.2% and 81.1%, respectively. In the combined exposure groups, OTC alleviated the adverse effects of PVC on the cherry radish leaf number and shoot fresh weight. This was linked to that OTC increased the content of photosynthetic pigments. Superoxide dismutase activity in cherry radish roots was inhibited to different extents in all treatment groups except for the PA and PVC treatments. Malondialdehyde (MDA) content in cherry radish roots increased in all treatment groups, suggesting that both OTC and MPs caused oxidative damage to cherry radish root cells, therefore inhibiting cherry radish root growth. However, the presence of OTC non-significantly changed the effects of MPs on cherry radish roots. Irrespective of OTC presence, MPs induced a reduction in the root/shoot ratio of cherry radish, suggesting that the inhibitory effect of MPs on cherry radish roots was stronger than that on shoots. These findings contribute to the evaluation of the phytotoxicity of antibiotics and MPs in soil-vegetable systems. [Display omitted] •PVC was more toxic to cherry radish than PA, PP, and OTC.•OTC alleviated the effect of PVC on shoot by increasing photosynthetic pigments.•OTC nonsignificantly changed the effects of MPs on cherry radish roots.•MPs inhibited cherry radish root growth by causing oxidative damage.
ISSN:0981-9428
1873-2690
DOI:10.1016/j.plaphy.2022.09.012