Loading…
A primordial Orange Carotenoid Protein: Structure, photoswitching activity and evolutionary aspects
Cyanobacteria are photosynthesizing prokaryotes responsible for the Great Oxygenation Event on Earth ~2.5 Ga years ago. They use a specific photoprotective mechanism based on the 35-kDa photoactive Orange Carotenoid Protein (OCP), a promising target for developing novel optogenetic tools and for bio...
Saved in:
Published in: | International journal of biological macromolecules 2022-12, Vol.222, p.167-180 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c308t-3ba0ab6cc44e8188b7814486058da83248926285bd8474f0bb29d79cea8156bd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c308t-3ba0ab6cc44e8188b7814486058da83248926285bd8474f0bb29d79cea8156bd3 |
container_end_page | 180 |
container_issue | |
container_start_page | 167 |
container_title | International journal of biological macromolecules |
container_volume | 222 |
creator | Slonimskiy, Yury B. Zupnik, Andrei O. Varfolomeeva, Larisa A. Boyko, Konstantin M. Maksimov, Eugene G. Sluchanko, Nikolai N. |
description | Cyanobacteria are photosynthesizing prokaryotes responsible for the Great Oxygenation Event on Earth ~2.5 Ga years ago. They use a specific photoprotective mechanism based on the 35-kDa photoactive Orange Carotenoid Protein (OCP), a promising target for developing novel optogenetic tools and for biomass engineering. The two-domain OCP presumably stems from domain fusion, yet the primitive thylakoid-less cyanobacteria Gloeobacter encodes a complete OCP. Its photosynthesis regulation lacks the so-called Fluorescence Recovery Protein (FRP), which in Synechocystis inhibits OCP-mediated phycobilisome fluorescence quenching, and Gloeobacter OCP belongs to the recently defined, heterogeneous clade OCPX (GlOCPX), the least characterized compared to OCP2 and especially OCP1 clades. Here, we describe the first crystal structure of OCPX, which explains unique functional adaptations of Gloeobacter OCPX compared to OCP1 from Synechocystis. We show that monomeric GlOCPX exploits a remarkable intramolecular locking mechanism stabilizing its dark-adapted state and exhibits drastically accelerated, less temperature-dependent recovery after photoactivation. While GlOCPX quenches Synechocystis phycobilisomes similar to Synechocystis OCP1, it evades interaction with and regulation by FRP from other species and likely uses alternative mechanisms for fluorescence recovery. This analysis of a primordial OCPX sheds light on its evolution, rationalizing renaming and subdivision of the OCPX clade into subclades – OCP3a, OCP3b, OCP3c. |
doi_str_mv | 10.1016/j.ijbiomac.2022.09.131 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2718641561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813022020621</els_id><sourcerecordid>2723118841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-3ba0ab6cc44e8188b7814486058da83248926285bd8474f0bb29d79cea8156bd3</originalsourceid><addsrcrecordid>eNqNUU1LAzEUDKJgrf4FydGDu-Zl092sJ0vxCwoV1HPIJmmbst3UJFvx35uletbTewwzAzOD0CWQHAiUN5vcbhrrtlLllFCakzqHAo7QCHhVZ4SQ4hiNCDDIOBTkFJ2FsEloOQE-QmqKd95unddWtnjhZbcyeCa9i6ZzVuOX4bPdLX6Nvlex9-Ya79YuuvBpo1rbboWlinZv4xeWncZm79o-WtdJn4CwMyqGc3SylG0wFz93jN4f7t9mT9l88fg8m84zVRAes6KRRDalUowZDpw3FQfGeEkmXEteUMZrWlI-aTRnFVuSpqG1rmplJIdJ2ehijK4OvjvvPnoTotjaoEzbys64Pgha0QKSMYN_UIGXLNkO1PJAVd6F4M1SDIWleAKIGAYQG_E7gBgGEKQWaYAkvDsITcq8t8aLoKzplNHWp1qEdvYvi28jfJMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718641561</pqid></control><display><type>article</type><title>A primordial Orange Carotenoid Protein: Structure, photoswitching activity and evolutionary aspects</title><source>ScienceDirect Journals</source><creator>Slonimskiy, Yury B. ; Zupnik, Andrei O. ; Varfolomeeva, Larisa A. ; Boyko, Konstantin M. ; Maksimov, Eugene G. ; Sluchanko, Nikolai N.</creator><creatorcontrib>Slonimskiy, Yury B. ; Zupnik, Andrei O. ; Varfolomeeva, Larisa A. ; Boyko, Konstantin M. ; Maksimov, Eugene G. ; Sluchanko, Nikolai N.</creatorcontrib><description>Cyanobacteria are photosynthesizing prokaryotes responsible for the Great Oxygenation Event on Earth ~2.5 Ga years ago. They use a specific photoprotective mechanism based on the 35-kDa photoactive Orange Carotenoid Protein (OCP), a promising target for developing novel optogenetic tools and for biomass engineering. The two-domain OCP presumably stems from domain fusion, yet the primitive thylakoid-less cyanobacteria Gloeobacter encodes a complete OCP. Its photosynthesis regulation lacks the so-called Fluorescence Recovery Protein (FRP), which in Synechocystis inhibits OCP-mediated phycobilisome fluorescence quenching, and Gloeobacter OCP belongs to the recently defined, heterogeneous clade OCPX (GlOCPX), the least characterized compared to OCP2 and especially OCP1 clades. Here, we describe the first crystal structure of OCPX, which explains unique functional adaptations of Gloeobacter OCPX compared to OCP1 from Synechocystis. We show that monomeric GlOCPX exploits a remarkable intramolecular locking mechanism stabilizing its dark-adapted state and exhibits drastically accelerated, less temperature-dependent recovery after photoactivation. While GlOCPX quenches Synechocystis phycobilisomes similar to Synechocystis OCP1, it evades interaction with and regulation by FRP from other species and likely uses alternative mechanisms for fluorescence recovery. This analysis of a primordial OCPX sheds light on its evolution, rationalizing renaming and subdivision of the OCPX clade into subclades – OCP3a, OCP3b, OCP3c.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2022.09.131</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>biomass ; carotenoids ; crystal structure ; domain ; evolution ; fluorescence ; Gloeobacter ; Oligomeric state ; optogenetics ; Orange Carotenoid Protein X ; Photoactivity ; photosynthesis ; phycobilisome ; prokaryotic cells ; radiation resistance ; SEC-MALS ; species ; Structure ; Synechocystis</subject><ispartof>International journal of biological macromolecules, 2022-12, Vol.222, p.167-180</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-3ba0ab6cc44e8188b7814486058da83248926285bd8474f0bb29d79cea8156bd3</citedby><cites>FETCH-LOGICAL-c308t-3ba0ab6cc44e8188b7814486058da83248926285bd8474f0bb29d79cea8156bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Slonimskiy, Yury B.</creatorcontrib><creatorcontrib>Zupnik, Andrei O.</creatorcontrib><creatorcontrib>Varfolomeeva, Larisa A.</creatorcontrib><creatorcontrib>Boyko, Konstantin M.</creatorcontrib><creatorcontrib>Maksimov, Eugene G.</creatorcontrib><creatorcontrib>Sluchanko, Nikolai N.</creatorcontrib><title>A primordial Orange Carotenoid Protein: Structure, photoswitching activity and evolutionary aspects</title><title>International journal of biological macromolecules</title><description>Cyanobacteria are photosynthesizing prokaryotes responsible for the Great Oxygenation Event on Earth ~2.5 Ga years ago. They use a specific photoprotective mechanism based on the 35-kDa photoactive Orange Carotenoid Protein (OCP), a promising target for developing novel optogenetic tools and for biomass engineering. The two-domain OCP presumably stems from domain fusion, yet the primitive thylakoid-less cyanobacteria Gloeobacter encodes a complete OCP. Its photosynthesis regulation lacks the so-called Fluorescence Recovery Protein (FRP), which in Synechocystis inhibits OCP-mediated phycobilisome fluorescence quenching, and Gloeobacter OCP belongs to the recently defined, heterogeneous clade OCPX (GlOCPX), the least characterized compared to OCP2 and especially OCP1 clades. Here, we describe the first crystal structure of OCPX, which explains unique functional adaptations of Gloeobacter OCPX compared to OCP1 from Synechocystis. We show that monomeric GlOCPX exploits a remarkable intramolecular locking mechanism stabilizing its dark-adapted state and exhibits drastically accelerated, less temperature-dependent recovery after photoactivation. While GlOCPX quenches Synechocystis phycobilisomes similar to Synechocystis OCP1, it evades interaction with and regulation by FRP from other species and likely uses alternative mechanisms for fluorescence recovery. This analysis of a primordial OCPX sheds light on its evolution, rationalizing renaming and subdivision of the OCPX clade into subclades – OCP3a, OCP3b, OCP3c.</description><subject>biomass</subject><subject>carotenoids</subject><subject>crystal structure</subject><subject>domain</subject><subject>evolution</subject><subject>fluorescence</subject><subject>Gloeobacter</subject><subject>Oligomeric state</subject><subject>optogenetics</subject><subject>Orange Carotenoid Protein X</subject><subject>Photoactivity</subject><subject>photosynthesis</subject><subject>phycobilisome</subject><subject>prokaryotic cells</subject><subject>radiation resistance</subject><subject>SEC-MALS</subject><subject>species</subject><subject>Structure</subject><subject>Synechocystis</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNUU1LAzEUDKJgrf4FydGDu-Zl092sJ0vxCwoV1HPIJmmbst3UJFvx35uletbTewwzAzOD0CWQHAiUN5vcbhrrtlLllFCakzqHAo7QCHhVZ4SQ4hiNCDDIOBTkFJ2FsEloOQE-QmqKd95unddWtnjhZbcyeCa9i6ZzVuOX4bPdLX6Nvlex9-Ya79YuuvBpo1rbboWlinZv4xeWncZm79o-WtdJn4CwMyqGc3SylG0wFz93jN4f7t9mT9l88fg8m84zVRAes6KRRDalUowZDpw3FQfGeEkmXEteUMZrWlI-aTRnFVuSpqG1rmplJIdJ2ehijK4OvjvvPnoTotjaoEzbys64Pgha0QKSMYN_UIGXLNkO1PJAVd6F4M1SDIWleAKIGAYQG_E7gBgGEKQWaYAkvDsITcq8t8aLoKzplNHWp1qEdvYvi28jfJMg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Slonimskiy, Yury B.</creator><creator>Zupnik, Andrei O.</creator><creator>Varfolomeeva, Larisa A.</creator><creator>Boyko, Konstantin M.</creator><creator>Maksimov, Eugene G.</creator><creator>Sluchanko, Nikolai N.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20221201</creationdate><title>A primordial Orange Carotenoid Protein: Structure, photoswitching activity and evolutionary aspects</title><author>Slonimskiy, Yury B. ; Zupnik, Andrei O. ; Varfolomeeva, Larisa A. ; Boyko, Konstantin M. ; Maksimov, Eugene G. ; Sluchanko, Nikolai N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-3ba0ab6cc44e8188b7814486058da83248926285bd8474f0bb29d79cea8156bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>biomass</topic><topic>carotenoids</topic><topic>crystal structure</topic><topic>domain</topic><topic>evolution</topic><topic>fluorescence</topic><topic>Gloeobacter</topic><topic>Oligomeric state</topic><topic>optogenetics</topic><topic>Orange Carotenoid Protein X</topic><topic>Photoactivity</topic><topic>photosynthesis</topic><topic>phycobilisome</topic><topic>prokaryotic cells</topic><topic>radiation resistance</topic><topic>SEC-MALS</topic><topic>species</topic><topic>Structure</topic><topic>Synechocystis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slonimskiy, Yury B.</creatorcontrib><creatorcontrib>Zupnik, Andrei O.</creatorcontrib><creatorcontrib>Varfolomeeva, Larisa A.</creatorcontrib><creatorcontrib>Boyko, Konstantin M.</creatorcontrib><creatorcontrib>Maksimov, Eugene G.</creatorcontrib><creatorcontrib>Sluchanko, Nikolai N.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slonimskiy, Yury B.</au><au>Zupnik, Andrei O.</au><au>Varfolomeeva, Larisa A.</au><au>Boyko, Konstantin M.</au><au>Maksimov, Eugene G.</au><au>Sluchanko, Nikolai N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A primordial Orange Carotenoid Protein: Structure, photoswitching activity and evolutionary aspects</atitle><jtitle>International journal of biological macromolecules</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>222</volume><spage>167</spage><epage>180</epage><pages>167-180</pages><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>Cyanobacteria are photosynthesizing prokaryotes responsible for the Great Oxygenation Event on Earth ~2.5 Ga years ago. They use a specific photoprotective mechanism based on the 35-kDa photoactive Orange Carotenoid Protein (OCP), a promising target for developing novel optogenetic tools and for biomass engineering. The two-domain OCP presumably stems from domain fusion, yet the primitive thylakoid-less cyanobacteria Gloeobacter encodes a complete OCP. Its photosynthesis regulation lacks the so-called Fluorescence Recovery Protein (FRP), which in Synechocystis inhibits OCP-mediated phycobilisome fluorescence quenching, and Gloeobacter OCP belongs to the recently defined, heterogeneous clade OCPX (GlOCPX), the least characterized compared to OCP2 and especially OCP1 clades. Here, we describe the first crystal structure of OCPX, which explains unique functional adaptations of Gloeobacter OCPX compared to OCP1 from Synechocystis. We show that monomeric GlOCPX exploits a remarkable intramolecular locking mechanism stabilizing its dark-adapted state and exhibits drastically accelerated, less temperature-dependent recovery after photoactivation. While GlOCPX quenches Synechocystis phycobilisomes similar to Synechocystis OCP1, it evades interaction with and regulation by FRP from other species and likely uses alternative mechanisms for fluorescence recovery. This analysis of a primordial OCPX sheds light on its evolution, rationalizing renaming and subdivision of the OCPX clade into subclades – OCP3a, OCP3b, OCP3c.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ijbiomac.2022.09.131</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8130 |
ispartof | International journal of biological macromolecules, 2022-12, Vol.222, p.167-180 |
issn | 0141-8130 1879-0003 |
language | eng |
recordid | cdi_proquest_miscellaneous_2718641561 |
source | ScienceDirect Journals |
subjects | biomass carotenoids crystal structure domain evolution fluorescence Gloeobacter Oligomeric state optogenetics Orange Carotenoid Protein X Photoactivity photosynthesis phycobilisome prokaryotic cells radiation resistance SEC-MALS species Structure Synechocystis |
title | A primordial Orange Carotenoid Protein: Structure, photoswitching activity and evolutionary aspects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20primordial%20Orange%20Carotenoid%20Protein:%20Structure,%20photoswitching%20activity%20and%20evolutionary%20aspects&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Slonimskiy,%20Yury%20B.&rft.date=2022-12-01&rft.volume=222&rft.spage=167&rft.epage=180&rft.pages=167-180&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2022.09.131&rft_dat=%3Cproquest_cross%3E2723118841%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-3ba0ab6cc44e8188b7814486058da83248926285bd8474f0bb29d79cea8156bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2718641561&rft_id=info:pmid/&rfr_iscdi=true |