Loading…

A primordial Orange Carotenoid Protein: Structure, photoswitching activity and evolutionary aspects

Cyanobacteria are photosynthesizing prokaryotes responsible for the Great Oxygenation Event on Earth ~2.5 Ga years ago. They use a specific photoprotective mechanism based on the 35-kDa photoactive Orange Carotenoid Protein (OCP), a promising target for developing novel optogenetic tools and for bio...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2022-12, Vol.222, p.167-180
Main Authors: Slonimskiy, Yury B., Zupnik, Andrei O., Varfolomeeva, Larisa A., Boyko, Konstantin M., Maksimov, Eugene G., Sluchanko, Nikolai N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c308t-3ba0ab6cc44e8188b7814486058da83248926285bd8474f0bb29d79cea8156bd3
cites cdi_FETCH-LOGICAL-c308t-3ba0ab6cc44e8188b7814486058da83248926285bd8474f0bb29d79cea8156bd3
container_end_page 180
container_issue
container_start_page 167
container_title International journal of biological macromolecules
container_volume 222
creator Slonimskiy, Yury B.
Zupnik, Andrei O.
Varfolomeeva, Larisa A.
Boyko, Konstantin M.
Maksimov, Eugene G.
Sluchanko, Nikolai N.
description Cyanobacteria are photosynthesizing prokaryotes responsible for the Great Oxygenation Event on Earth ~2.5 Ga years ago. They use a specific photoprotective mechanism based on the 35-kDa photoactive Orange Carotenoid Protein (OCP), a promising target for developing novel optogenetic tools and for biomass engineering. The two-domain OCP presumably stems from domain fusion, yet the primitive thylakoid-less cyanobacteria Gloeobacter encodes a complete OCP. Its photosynthesis regulation lacks the so-called Fluorescence Recovery Protein (FRP), which in Synechocystis inhibits OCP-mediated phycobilisome fluorescence quenching, and Gloeobacter OCP belongs to the recently defined, heterogeneous clade OCPX (GlOCPX), the least characterized compared to OCP2 and especially OCP1 clades. Here, we describe the first crystal structure of OCPX, which explains unique functional adaptations of Gloeobacter OCPX compared to OCP1 from Synechocystis. We show that monomeric GlOCPX exploits a remarkable intramolecular locking mechanism stabilizing its dark-adapted state and exhibits drastically accelerated, less temperature-dependent recovery after photoactivation. While GlOCPX quenches Synechocystis phycobilisomes similar to Synechocystis OCP1, it evades interaction with and regulation by FRP from other species and likely uses alternative mechanisms for fluorescence recovery. This analysis of a primordial OCPX sheds light on its evolution, rationalizing renaming and subdivision of the OCPX clade into subclades – OCP3a, OCP3b, OCP3c.
doi_str_mv 10.1016/j.ijbiomac.2022.09.131
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2718641561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813022020621</els_id><sourcerecordid>2723118841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-3ba0ab6cc44e8188b7814486058da83248926285bd8474f0bb29d79cea8156bd3</originalsourceid><addsrcrecordid>eNqNUU1LAzEUDKJgrf4FydGDu-Zl092sJ0vxCwoV1HPIJmmbst3UJFvx35uletbTewwzAzOD0CWQHAiUN5vcbhrrtlLllFCakzqHAo7QCHhVZ4SQ4hiNCDDIOBTkFJ2FsEloOQE-QmqKd95unddWtnjhZbcyeCa9i6ZzVuOX4bPdLX6Nvlex9-Ya79YuuvBpo1rbboWlinZv4xeWncZm79o-WtdJn4CwMyqGc3SylG0wFz93jN4f7t9mT9l88fg8m84zVRAes6KRRDalUowZDpw3FQfGeEkmXEteUMZrWlI-aTRnFVuSpqG1rmplJIdJ2ehijK4OvjvvPnoTotjaoEzbys64Pgha0QKSMYN_UIGXLNkO1PJAVd6F4M1SDIWleAKIGAYQG_E7gBgGEKQWaYAkvDsITcq8t8aLoKzplNHWp1qEdvYvi28jfJMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718641561</pqid></control><display><type>article</type><title>A primordial Orange Carotenoid Protein: Structure, photoswitching activity and evolutionary aspects</title><source>ScienceDirect Journals</source><creator>Slonimskiy, Yury B. ; Zupnik, Andrei O. ; Varfolomeeva, Larisa A. ; Boyko, Konstantin M. ; Maksimov, Eugene G. ; Sluchanko, Nikolai N.</creator><creatorcontrib>Slonimskiy, Yury B. ; Zupnik, Andrei O. ; Varfolomeeva, Larisa A. ; Boyko, Konstantin M. ; Maksimov, Eugene G. ; Sluchanko, Nikolai N.</creatorcontrib><description>Cyanobacteria are photosynthesizing prokaryotes responsible for the Great Oxygenation Event on Earth ~2.5 Ga years ago. They use a specific photoprotective mechanism based on the 35-kDa photoactive Orange Carotenoid Protein (OCP), a promising target for developing novel optogenetic tools and for biomass engineering. The two-domain OCP presumably stems from domain fusion, yet the primitive thylakoid-less cyanobacteria Gloeobacter encodes a complete OCP. Its photosynthesis regulation lacks the so-called Fluorescence Recovery Protein (FRP), which in Synechocystis inhibits OCP-mediated phycobilisome fluorescence quenching, and Gloeobacter OCP belongs to the recently defined, heterogeneous clade OCPX (GlOCPX), the least characterized compared to OCP2 and especially OCP1 clades. Here, we describe the first crystal structure of OCPX, which explains unique functional adaptations of Gloeobacter OCPX compared to OCP1 from Synechocystis. We show that monomeric GlOCPX exploits a remarkable intramolecular locking mechanism stabilizing its dark-adapted state and exhibits drastically accelerated, less temperature-dependent recovery after photoactivation. While GlOCPX quenches Synechocystis phycobilisomes similar to Synechocystis OCP1, it evades interaction with and regulation by FRP from other species and likely uses alternative mechanisms for fluorescence recovery. This analysis of a primordial OCPX sheds light on its evolution, rationalizing renaming and subdivision of the OCPX clade into subclades – OCP3a, OCP3b, OCP3c.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2022.09.131</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>biomass ; carotenoids ; crystal structure ; domain ; evolution ; fluorescence ; Gloeobacter ; Oligomeric state ; optogenetics ; Orange Carotenoid Protein X ; Photoactivity ; photosynthesis ; phycobilisome ; prokaryotic cells ; radiation resistance ; SEC-MALS ; species ; Structure ; Synechocystis</subject><ispartof>International journal of biological macromolecules, 2022-12, Vol.222, p.167-180</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-3ba0ab6cc44e8188b7814486058da83248926285bd8474f0bb29d79cea8156bd3</citedby><cites>FETCH-LOGICAL-c308t-3ba0ab6cc44e8188b7814486058da83248926285bd8474f0bb29d79cea8156bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Slonimskiy, Yury B.</creatorcontrib><creatorcontrib>Zupnik, Andrei O.</creatorcontrib><creatorcontrib>Varfolomeeva, Larisa A.</creatorcontrib><creatorcontrib>Boyko, Konstantin M.</creatorcontrib><creatorcontrib>Maksimov, Eugene G.</creatorcontrib><creatorcontrib>Sluchanko, Nikolai N.</creatorcontrib><title>A primordial Orange Carotenoid Protein: Structure, photoswitching activity and evolutionary aspects</title><title>International journal of biological macromolecules</title><description>Cyanobacteria are photosynthesizing prokaryotes responsible for the Great Oxygenation Event on Earth ~2.5 Ga years ago. They use a specific photoprotective mechanism based on the 35-kDa photoactive Orange Carotenoid Protein (OCP), a promising target for developing novel optogenetic tools and for biomass engineering. The two-domain OCP presumably stems from domain fusion, yet the primitive thylakoid-less cyanobacteria Gloeobacter encodes a complete OCP. Its photosynthesis regulation lacks the so-called Fluorescence Recovery Protein (FRP), which in Synechocystis inhibits OCP-mediated phycobilisome fluorescence quenching, and Gloeobacter OCP belongs to the recently defined, heterogeneous clade OCPX (GlOCPX), the least characterized compared to OCP2 and especially OCP1 clades. Here, we describe the first crystal structure of OCPX, which explains unique functional adaptations of Gloeobacter OCPX compared to OCP1 from Synechocystis. We show that monomeric GlOCPX exploits a remarkable intramolecular locking mechanism stabilizing its dark-adapted state and exhibits drastically accelerated, less temperature-dependent recovery after photoactivation. While GlOCPX quenches Synechocystis phycobilisomes similar to Synechocystis OCP1, it evades interaction with and regulation by FRP from other species and likely uses alternative mechanisms for fluorescence recovery. This analysis of a primordial OCPX sheds light on its evolution, rationalizing renaming and subdivision of the OCPX clade into subclades – OCP3a, OCP3b, OCP3c.</description><subject>biomass</subject><subject>carotenoids</subject><subject>crystal structure</subject><subject>domain</subject><subject>evolution</subject><subject>fluorescence</subject><subject>Gloeobacter</subject><subject>Oligomeric state</subject><subject>optogenetics</subject><subject>Orange Carotenoid Protein X</subject><subject>Photoactivity</subject><subject>photosynthesis</subject><subject>phycobilisome</subject><subject>prokaryotic cells</subject><subject>radiation resistance</subject><subject>SEC-MALS</subject><subject>species</subject><subject>Structure</subject><subject>Synechocystis</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNUU1LAzEUDKJgrf4FydGDu-Zl092sJ0vxCwoV1HPIJmmbst3UJFvx35uletbTewwzAzOD0CWQHAiUN5vcbhrrtlLllFCakzqHAo7QCHhVZ4SQ4hiNCDDIOBTkFJ2FsEloOQE-QmqKd95unddWtnjhZbcyeCa9i6ZzVuOX4bPdLX6Nvlex9-Ya79YuuvBpo1rbboWlinZv4xeWncZm79o-WtdJn4CwMyqGc3SylG0wFz93jN4f7t9mT9l88fg8m84zVRAes6KRRDalUowZDpw3FQfGeEkmXEteUMZrWlI-aTRnFVuSpqG1rmplJIdJ2ehijK4OvjvvPnoTotjaoEzbys64Pgha0QKSMYN_UIGXLNkO1PJAVd6F4M1SDIWleAKIGAYQG_E7gBgGEKQWaYAkvDsITcq8t8aLoKzplNHWp1qEdvYvi28jfJMg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Slonimskiy, Yury B.</creator><creator>Zupnik, Andrei O.</creator><creator>Varfolomeeva, Larisa A.</creator><creator>Boyko, Konstantin M.</creator><creator>Maksimov, Eugene G.</creator><creator>Sluchanko, Nikolai N.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20221201</creationdate><title>A primordial Orange Carotenoid Protein: Structure, photoswitching activity and evolutionary aspects</title><author>Slonimskiy, Yury B. ; Zupnik, Andrei O. ; Varfolomeeva, Larisa A. ; Boyko, Konstantin M. ; Maksimov, Eugene G. ; Sluchanko, Nikolai N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-3ba0ab6cc44e8188b7814486058da83248926285bd8474f0bb29d79cea8156bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>biomass</topic><topic>carotenoids</topic><topic>crystal structure</topic><topic>domain</topic><topic>evolution</topic><topic>fluorescence</topic><topic>Gloeobacter</topic><topic>Oligomeric state</topic><topic>optogenetics</topic><topic>Orange Carotenoid Protein X</topic><topic>Photoactivity</topic><topic>photosynthesis</topic><topic>phycobilisome</topic><topic>prokaryotic cells</topic><topic>radiation resistance</topic><topic>SEC-MALS</topic><topic>species</topic><topic>Structure</topic><topic>Synechocystis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slonimskiy, Yury B.</creatorcontrib><creatorcontrib>Zupnik, Andrei O.</creatorcontrib><creatorcontrib>Varfolomeeva, Larisa A.</creatorcontrib><creatorcontrib>Boyko, Konstantin M.</creatorcontrib><creatorcontrib>Maksimov, Eugene G.</creatorcontrib><creatorcontrib>Sluchanko, Nikolai N.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slonimskiy, Yury B.</au><au>Zupnik, Andrei O.</au><au>Varfolomeeva, Larisa A.</au><au>Boyko, Konstantin M.</au><au>Maksimov, Eugene G.</au><au>Sluchanko, Nikolai N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A primordial Orange Carotenoid Protein: Structure, photoswitching activity and evolutionary aspects</atitle><jtitle>International journal of biological macromolecules</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>222</volume><spage>167</spage><epage>180</epage><pages>167-180</pages><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>Cyanobacteria are photosynthesizing prokaryotes responsible for the Great Oxygenation Event on Earth ~2.5 Ga years ago. They use a specific photoprotective mechanism based on the 35-kDa photoactive Orange Carotenoid Protein (OCP), a promising target for developing novel optogenetic tools and for biomass engineering. The two-domain OCP presumably stems from domain fusion, yet the primitive thylakoid-less cyanobacteria Gloeobacter encodes a complete OCP. Its photosynthesis regulation lacks the so-called Fluorescence Recovery Protein (FRP), which in Synechocystis inhibits OCP-mediated phycobilisome fluorescence quenching, and Gloeobacter OCP belongs to the recently defined, heterogeneous clade OCPX (GlOCPX), the least characterized compared to OCP2 and especially OCP1 clades. Here, we describe the first crystal structure of OCPX, which explains unique functional adaptations of Gloeobacter OCPX compared to OCP1 from Synechocystis. We show that monomeric GlOCPX exploits a remarkable intramolecular locking mechanism stabilizing its dark-adapted state and exhibits drastically accelerated, less temperature-dependent recovery after photoactivation. While GlOCPX quenches Synechocystis phycobilisomes similar to Synechocystis OCP1, it evades interaction with and regulation by FRP from other species and likely uses alternative mechanisms for fluorescence recovery. This analysis of a primordial OCPX sheds light on its evolution, rationalizing renaming and subdivision of the OCPX clade into subclades – OCP3a, OCP3b, OCP3c.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ijbiomac.2022.09.131</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2022-12, Vol.222, p.167-180
issn 0141-8130
1879-0003
language eng
recordid cdi_proquest_miscellaneous_2718641561
source ScienceDirect Journals
subjects biomass
carotenoids
crystal structure
domain
evolution
fluorescence
Gloeobacter
Oligomeric state
optogenetics
Orange Carotenoid Protein X
Photoactivity
photosynthesis
phycobilisome
prokaryotic cells
radiation resistance
SEC-MALS
species
Structure
Synechocystis
title A primordial Orange Carotenoid Protein: Structure, photoswitching activity and evolutionary aspects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20primordial%20Orange%20Carotenoid%20Protein:%20Structure,%20photoswitching%20activity%20and%20evolutionary%20aspects&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Slonimskiy,%20Yury%20B.&rft.date=2022-12-01&rft.volume=222&rft.spage=167&rft.epage=180&rft.pages=167-180&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2022.09.131&rft_dat=%3Cproquest_cross%3E2723118841%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-3ba0ab6cc44e8188b7814486058da83248926285bd8474f0bb29d79cea8156bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2718641561&rft_id=info:pmid/&rfr_iscdi=true