Loading…

Mechanisms for pitting corrosion in alloy N04400 as revealed by imaging XPS, ToF-SIMS and low-voltage SEM

Imaging XPS has been used to determine the distributional patterns of corrosion products of different chemistry on a nickel–copper alloy surface that has been subjected to pitting corrosion. Separate regions within corrosion pits can be identified with chemical processes that are suggested to be ano...

Full description

Saved in:
Bibliographic Details
Published in:Surface and interface analysis 2002-01, Vol.33 (1), p.29-34
Main Authors: Francis, J. T., McIntyre, N. S., Davidson, R. D., Ramamurthy, S., Brennenstühl, A. M., McBride, A., Roberts, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3627-1b25670f1d786037c61c400627512a2de98e45a1de0673d8f934878aa8df54063
cites cdi_FETCH-LOGICAL-c3627-1b25670f1d786037c61c400627512a2de98e45a1de0673d8f934878aa8df54063
container_end_page 34
container_issue 1
container_start_page 29
container_title Surface and interface analysis
container_volume 33
creator Francis, J. T.
McIntyre, N. S.
Davidson, R. D.
Ramamurthy, S.
Brennenstühl, A. M.
McBride, A.
Roberts, A.
description Imaging XPS has been used to determine the distributional patterns of corrosion products of different chemistry on a nickel–copper alloy surface that has been subjected to pitting corrosion. Separate regions within corrosion pits can be identified with chemical processes that are suggested to be anodic and cathodic in nature. The anodic processes are indicated by a thin layer of cuprous oxide covering the base alloy, suggesting the preferential dissolution of nickel. Areas undergoing a cathodic process are indicated by the deposition of nickel as an oxide or hydroxide. Adjacent regions also were studied by XPS and characterized further by low‐voltage SEM/energy‐dispersive x‐ray imaging and time‐of‐flight SIMS techniques to obtain confirmatory and complementary information. Typically, the anodic and cathodic areas were tens of microns in size. Copyright © 2002 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sia.1157
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27191927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27191927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3627-1b25670f1d786037c61c400627512a2de98e45a1de0673d8f934878aa8df54063</originalsourceid><addsrcrecordid>eNp1kE1vEzEQhi0EEqEg8RN8AXFgy9i7a3uPVdWkUZu00gbBzZp6vcHgrIO9_ci_r6NE5cRpDvPMO3ofQj4yOGUA_FtyeMpYLV-RCYNGFE3D1GsyAVbxglecvSXvUvoNAKpUYkLcwppfOLi0SbQPkW7dOLphTU2IMSQXBuoGit6HHV1CVQFQTDTaB4vedvRuR90G1_uDn7ftV7oK06KdL1qKQ0d9eCwegh9xbWl7sXhP3vTok_1wnCfk-_RidX5ZXN_M5udn14UpBZcFu-O1kNCzTioBpTSCmfw2r2rGkXe2UbaqkXUWhCw71TdlpaRCVF1fVyDKE_L5kLuN4e-9TaPeuGSs9zjYcJ80l6xhDZcZ_HIATW6aou31NuY2cacZ6L1LnV3qvcuMfjpmYjLo-4iDcekfX1YCstvMFQfu0Xm7-2-ebudnx9wj79Jon154jH90Lidr_WM501eXYrqCWaOX5TO80o4H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27191927</pqid></control><display><type>article</type><title>Mechanisms for pitting corrosion in alloy N04400 as revealed by imaging XPS, ToF-SIMS and low-voltage SEM</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Francis, J. T. ; McIntyre, N. S. ; Davidson, R. D. ; Ramamurthy, S. ; Brennenstühl, A. M. ; McBride, A. ; Roberts, A.</creator><creatorcontrib>Francis, J. T. ; McIntyre, N. S. ; Davidson, R. D. ; Ramamurthy, S. ; Brennenstühl, A. M. ; McBride, A. ; Roberts, A.</creatorcontrib><description>Imaging XPS has been used to determine the distributional patterns of corrosion products of different chemistry on a nickel–copper alloy surface that has been subjected to pitting corrosion. Separate regions within corrosion pits can be identified with chemical processes that are suggested to be anodic and cathodic in nature. The anodic processes are indicated by a thin layer of cuprous oxide covering the base alloy, suggesting the preferential dissolution of nickel. Areas undergoing a cathodic process are indicated by the deposition of nickel as an oxide or hydroxide. Adjacent regions also were studied by XPS and characterized further by low‐voltage SEM/energy‐dispersive x‐ray imaging and time‐of‐flight SIMS techniques to obtain confirmatory and complementary information. Typically, the anodic and cathodic areas were tens of microns in size. Copyright © 2002 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0142-2421</identifier><identifier>EISSN: 1096-9918</identifier><identifier>DOI: 10.1002/sia.1157</identifier><identifier>CODEN: SIANDQ</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Applied sciences ; Corrosion ; Corrosion mechanisms ; Exact sciences and technology ; Inconel ; Metals. Metallurgy ; pitting corrosion ; SEM ; ToF-SIMS ; XPS</subject><ispartof>Surface and interface analysis, 2002-01, Vol.33 (1), p.29-34</ispartof><rights>Copyright © 2002 John Wiley &amp; Sons, Ltd.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3627-1b25670f1d786037c61c400627512a2de98e45a1de0673d8f934878aa8df54063</citedby><cites>FETCH-LOGICAL-c3627-1b25670f1d786037c61c400627512a2de98e45a1de0673d8f934878aa8df54063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13460421$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Francis, J. T.</creatorcontrib><creatorcontrib>McIntyre, N. S.</creatorcontrib><creatorcontrib>Davidson, R. D.</creatorcontrib><creatorcontrib>Ramamurthy, S.</creatorcontrib><creatorcontrib>Brennenstühl, A. M.</creatorcontrib><creatorcontrib>McBride, A.</creatorcontrib><creatorcontrib>Roberts, A.</creatorcontrib><title>Mechanisms for pitting corrosion in alloy N04400 as revealed by imaging XPS, ToF-SIMS and low-voltage SEM</title><title>Surface and interface analysis</title><addtitle>Surf. Interface Anal</addtitle><description>Imaging XPS has been used to determine the distributional patterns of corrosion products of different chemistry on a nickel–copper alloy surface that has been subjected to pitting corrosion. Separate regions within corrosion pits can be identified with chemical processes that are suggested to be anodic and cathodic in nature. The anodic processes are indicated by a thin layer of cuprous oxide covering the base alloy, suggesting the preferential dissolution of nickel. Areas undergoing a cathodic process are indicated by the deposition of nickel as an oxide or hydroxide. Adjacent regions also were studied by XPS and characterized further by low‐voltage SEM/energy‐dispersive x‐ray imaging and time‐of‐flight SIMS techniques to obtain confirmatory and complementary information. Typically, the anodic and cathodic areas were tens of microns in size. Copyright © 2002 John Wiley &amp; Sons, Ltd.</description><subject>Applied sciences</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Exact sciences and technology</subject><subject>Inconel</subject><subject>Metals. Metallurgy</subject><subject>pitting corrosion</subject><subject>SEM</subject><subject>ToF-SIMS</subject><subject>XPS</subject><issn>0142-2421</issn><issn>1096-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1kE1vEzEQhi0EEqEg8RN8AXFgy9i7a3uPVdWkUZu00gbBzZp6vcHgrIO9_ci_r6NE5cRpDvPMO3ofQj4yOGUA_FtyeMpYLV-RCYNGFE3D1GsyAVbxglecvSXvUvoNAKpUYkLcwppfOLi0SbQPkW7dOLphTU2IMSQXBuoGit6HHV1CVQFQTDTaB4vedvRuR90G1_uDn7ftV7oK06KdL1qKQ0d9eCwegh9xbWl7sXhP3vTok_1wnCfk-_RidX5ZXN_M5udn14UpBZcFu-O1kNCzTioBpTSCmfw2r2rGkXe2UbaqkXUWhCw71TdlpaRCVF1fVyDKE_L5kLuN4e-9TaPeuGSs9zjYcJ80l6xhDZcZ_HIATW6aou31NuY2cacZ6L1LnV3qvcuMfjpmYjLo-4iDcekfX1YCstvMFQfu0Xm7-2-ebudnx9wj79Jon154jH90Lidr_WM501eXYrqCWaOX5TO80o4H</recordid><startdate>200201</startdate><enddate>200201</enddate><creator>Francis, J. T.</creator><creator>McIntyre, N. S.</creator><creator>Davidson, R. D.</creator><creator>Ramamurthy, S.</creator><creator>Brennenstühl, A. M.</creator><creator>McBride, A.</creator><creator>Roberts, A.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>200201</creationdate><title>Mechanisms for pitting corrosion in alloy N04400 as revealed by imaging XPS, ToF-SIMS and low-voltage SEM</title><author>Francis, J. T. ; McIntyre, N. S. ; Davidson, R. D. ; Ramamurthy, S. ; Brennenstühl, A. M. ; McBride, A. ; Roberts, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3627-1b25670f1d786037c61c400627512a2de98e45a1de0673d8f934878aa8df54063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Exact sciences and technology</topic><topic>Inconel</topic><topic>Metals. Metallurgy</topic><topic>pitting corrosion</topic><topic>SEM</topic><topic>ToF-SIMS</topic><topic>XPS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Francis, J. T.</creatorcontrib><creatorcontrib>McIntyre, N. S.</creatorcontrib><creatorcontrib>Davidson, R. D.</creatorcontrib><creatorcontrib>Ramamurthy, S.</creatorcontrib><creatorcontrib>Brennenstühl, A. M.</creatorcontrib><creatorcontrib>McBride, A.</creatorcontrib><creatorcontrib>Roberts, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface and interface analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Francis, J. T.</au><au>McIntyre, N. S.</au><au>Davidson, R. D.</au><au>Ramamurthy, S.</au><au>Brennenstühl, A. M.</au><au>McBride, A.</au><au>Roberts, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms for pitting corrosion in alloy N04400 as revealed by imaging XPS, ToF-SIMS and low-voltage SEM</atitle><jtitle>Surface and interface analysis</jtitle><addtitle>Surf. Interface Anal</addtitle><date>2002-01</date><risdate>2002</risdate><volume>33</volume><issue>1</issue><spage>29</spage><epage>34</epage><pages>29-34</pages><issn>0142-2421</issn><eissn>1096-9918</eissn><coden>SIANDQ</coden><abstract>Imaging XPS has been used to determine the distributional patterns of corrosion products of different chemistry on a nickel–copper alloy surface that has been subjected to pitting corrosion. Separate regions within corrosion pits can be identified with chemical processes that are suggested to be anodic and cathodic in nature. The anodic processes are indicated by a thin layer of cuprous oxide covering the base alloy, suggesting the preferential dissolution of nickel. Areas undergoing a cathodic process are indicated by the deposition of nickel as an oxide or hydroxide. Adjacent regions also were studied by XPS and characterized further by low‐voltage SEM/energy‐dispersive x‐ray imaging and time‐of‐flight SIMS techniques to obtain confirmatory and complementary information. Typically, the anodic and cathodic areas were tens of microns in size. Copyright © 2002 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/sia.1157</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-2421
ispartof Surface and interface analysis, 2002-01, Vol.33 (1), p.29-34
issn 0142-2421
1096-9918
language eng
recordid cdi_proquest_miscellaneous_27191927
source Wiley-Blackwell Read & Publish Collection
subjects Applied sciences
Corrosion
Corrosion mechanisms
Exact sciences and technology
Inconel
Metals. Metallurgy
pitting corrosion
SEM
ToF-SIMS
XPS
title Mechanisms for pitting corrosion in alloy N04400 as revealed by imaging XPS, ToF-SIMS and low-voltage SEM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20for%20pitting%20corrosion%20in%20alloy%20N04400%20as%20revealed%20by%20imaging%20XPS,%20ToF-SIMS%20and%20low-voltage%20SEM&rft.jtitle=Surface%20and%20interface%20analysis&rft.au=Francis,%20J.%20T.&rft.date=2002-01&rft.volume=33&rft.issue=1&rft.spage=29&rft.epage=34&rft.pages=29-34&rft.issn=0142-2421&rft.eissn=1096-9918&rft.coden=SIANDQ&rft_id=info:doi/10.1002/sia.1157&rft_dat=%3Cproquest_cross%3E27191927%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3627-1b25670f1d786037c61c400627512a2de98e45a1de0673d8f934878aa8df54063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27191927&rft_id=info:pmid/&rfr_iscdi=true