Loading…
Three-Dimensional Printing of Dipeptides with Spatioselective Programming of Crystallinity for Multilevel Anticounterfeiting
The functionalities of peptide microstructures and nanostructures can be enhanced by controlling their crystallinity. Gaining control over the crystallinity within the desired structure, however, remains a challenge. We have developed a three-dimensional (3D) printing method that enables spatioselec...
Saved in:
Published in: | Nano letters 2022-10, Vol.22 (19), p.7776-7783 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The functionalities of peptide microstructures and nanostructures can be enhanced by controlling their crystallinity. Gaining control over the crystallinity within the desired structure, however, remains a challenge. We have developed a three-dimensional (3D) printing method that enables spatioselective programming of the crystallinity of diphenylalanine (FF) dipeptide microarchitectures. A femtoliter ink meniscus is used to spatially control reprecipitation self-assembly, enabling the printing of a freestanding FF microstructure with programmed shape and crystallinity. The self-assembly crystallization of FF can be switched on and off at will by controlling the evaporation of the binary solvent. The evaporation-dependent crystallization was theoretically studied by the numerical simulation of supersaturation fields in the meniscus. We found that a 3D-printed FF microarchitecture with spatially programmed crystallinity can carry a 3D digital optical anisotropy pattern, applicable to generating polarization-encoded anticounterfeiting labels. This crystallinity-controlled additive manufacturing will pave the new way for facilitating the creation of peptide-based devices. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.2c01761 |