Loading…

Modeling of in-line low-NOx calciners: a parametric study

Simulations with a heterogeneous model of an in-line low-NO(subx) calciner, based on non-isothermal diffusion-reaction models for char combustion and limestone calcination combined with a kinetic model for NO formation and reduction, are reported. The analysis shows that the most important hydrodyna...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering science 2002-03, Vol.57 (5), p.789-803
Main Authors: ILIUTA, I, DAM-JOHANSEN, K, JENSEN, A, JENSEN, L. S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Simulations with a heterogeneous model of an in-line low-NO(subx) calciner, based on non-isothermal diffusion-reaction models for char combustion and limestone calcination combined with a kinetic model for NO formation and reduction, are reported. The analysis shows that the most important hydrodynamic parameter is the mixing rate of preheated combustion air into the sub-stoichiometric suspension leaving the reducing zone. The most important combustion parameter is the char reactivity. Also, the calcination rate considerably modifies the temperature in the calciner, char and limestone conversion and NO emission. Carbon monoxide is a key component for the reduction of NO and reliable data for the kinetics of NO reduction by CO over CaO are very important for the prediction of the NO emission. The internal surface area of char and limestone particles influences the combustion and calcination rates and thereby the char and limestone conversion and the NO emission. (Original abstract - amended)
ISSN:0009-2509
1873-4405
DOI:10.1016/S0009-2509(02)00003-9