Loading…
Determinants of spatial variability of air pollutant concentrations in a street canyon network measured using a mobile laboratory and a drone
Urban air pollutant concentrations are highly variable both in space and time. In order to understand these variabilities high-resolution measurements of air pollutants are needed. Here we present results of a mobile laboratory and a drone measurements made within a street-canyon network in Helsinki...
Saved in:
Published in: | The Science of the total environment 2023-01, Vol.856, p.158974-158974, Article 158974 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Urban air pollutant concentrations are highly variable both in space and time. In order to understand these variabilities high-resolution measurements of air pollutants are needed. Here we present results of a mobile laboratory and a drone measurements made within a street-canyon network in Helsinki, Finland, in summer and winter 2017. The mobile laboratory measured the total number concentration (N) and lung-deposited surface area (LDSA) of aerosol particles, and the concentrations of black carbon, nitric oxide (NOx) and ozone (O3). The drone measured the vertical profile of LDSA. The main aims were to examine the spatial variability of air pollutants in a wide street canyon and its immediate surroundings, and find the controlling environmental variables for the observed variability's.
The highest concentrations with the most temporal variability were measured at the main street canyon when the mobile laboratory was moving with the traffic fleet for all air pollutants except O3. The street canyon concentration levels were more affected by traffic rates whereas on surrounding areas, meteorological conditions dominated. Both the mean flow and turbulence were important, the latter particularly for smaller aerosol particles through LDSA and N. The formation of concentration hotspots in the street network were mostly controlled by mechanical processes but in winter thermal processes became also important for aerosol particles. LDSA showed large variability in the profile shape, and surface and background concentrations. The expected exponential decay functions worked better in well-mixed conditions in summer compared to winter. We derived equation for the vertical decay which was mostly controlled by the air temperature. Mean wind dominated the profile shape over both thermal and mechanical turbulence. This study is among the first experimental studies to demonstrate the importance of high-resolution measurements in understanding urban pollutant variability in detail.
[Display omitted]
•The spatial variability of air pollutant concentrations was experimentally evaluated using observations from a mobile laboratory and a drone•We observed that both mean flow and turbulent fluctuations need to be considered when pollutant dispersion and concentrations are examined•Thermal turbulence has strong impact particularly on the formation of aerosol particle hotspots in winter•Prediction equations for vertical pollutant decay in a wide street canyon were developed•The ver |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2022.158974 |