Loading…
Learning Dynamic Patient-Robot Task Assignment and Scheduling for A Robotic Rehabilitation Gym
A robotic rehabilitation gym is a setup that allows multiple patients to exercise together using multiple robots. The effectiveness of training in such a group setting could be increased by dynamically assigning patients to specific robots. In this simulation study, we develop an automated system th...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A robotic rehabilitation gym is a setup that allows multiple patients to exercise together using multiple robots. The effectiveness of training in such a group setting could be increased by dynamically assigning patients to specific robots. In this simulation study, we develop an automated system that dynamically makes patient-robot assignments based on measured patient performance to achieve optimal group rehabilitation outcome. To solve the dynamic assignment problem, we propose an approach that uses a neural network classifier to predict the assignment priority between two patients for a specific robot given their task success rate on that robot. The priority classifier is trained using assignment demonstrations provided by a domain expert. In the absence of real human data from a robotic gym, we develop a robotic gym simulator and create a synthetic dataset for training the classifier. The simulation results show that our approach makes effective assignments that yield comparable patient training outcomes to those obtained by the domain expert. |
---|---|
ISSN: | 1945-7901 |
DOI: | 10.1109/ICORR55369.2022.9896498 |