Loading…

Model resolution matrix based deconvolution improves over non-quadratic penalization in frequency-domain photoacoustic tomography

Frequency domain photoacoustic tomography is becoming more attractive due to low-cost and compact light-sources being used; however, frequency-domain implementation suffers from lower signal to noise compared to time-domain implementation. In this work, we have developed a non-quadratic based penali...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of the Acoustical Society of America 2022-09, Vol.152 (3), p.1345-1356
Main Authors: Nakshatri, Hemanth S., Prakash, Jaya
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Frequency domain photoacoustic tomography is becoming more attractive due to low-cost and compact light-sources being used; however, frequency-domain implementation suffers from lower signal to noise compared to time-domain implementation. In this work, we have developed a non-quadratic based penalization framework for frequency-domain photoacoustic imaging, and further proposed a two-step model-resolution matrix based deconvolution approach to improve the reconstruction image quality. The model-resolution matrix was developed in the context of different penalty functions like l2-norm, l1-norm, Cauchy, and Geman-McClure. These model-resolution matrices were then used to perform the deconvolution operation using split augmented Lagrangian shrinkage thresholding algorithm in both full-view and limited-view configurations. The results indicated that the two-step approach outperformed the different penalty function (prior constraint) based reconstruction, with an improvement of about 20% in terms of peak signal to noise ratio and 30% in terms of structural similarity index measure. The improved image quality provided using these algorithms will have a direct impact on realizing practical frequency-domain implementation in both limited-view and full-view configurations.
ISSN:0001-4966
1520-8524
DOI:10.1121/10.0013829