Loading…

Advances in the regulation of kinetics of cathodic H+/Zn2+ interfacial transport in aqueous Zn/MnO2 electrochemistry

Rechargeable aqueous Zn–MnO2 energy storage systems have attracted extensive attention owing to their high theoretical capacity and non-flammable mild aqueous electrolytes. Nevertheless, the complicated reaction mechanism of a MnO2-based cathode severely restricts its further development. Therefore,...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2022-10, Vol.14 (39), p.14433-14454
Main Authors: Shang, Zhoutai, Wang, Shoujuan, Zhang, Hong, Zhang, Wenli, Lu, Songtao, Lu, Ke
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 14454
container_issue 39
container_start_page 14433
container_title Nanoscale
container_volume 14
creator Shang, Zhoutai
Wang, Shoujuan
Zhang, Hong
Zhang, Wenli
Lu, Songtao
Lu, Ke
description Rechargeable aqueous Zn–MnO2 energy storage systems have attracted extensive attention owing to their high theoretical capacity and non-flammable mild aqueous electrolytes. Nevertheless, the complicated reaction mechanism of a MnO2-based cathode severely restricts its further development. Therefore, it is crucial to clarify the kinetics of H+/Zn2+ interfacial transport in the MnO2 cathode for realizing controllable regulation of interfacial ion transport and then realizing high capacity and long lifespan. Recently, based on different reaction mechanisms, various strategies have been employed to improve the performance of aqueous Zn/MnO2 cells, such as surface modifications and structural engineering. Herein, we systematically summarize the recent advances in the modulation of interfacial H+/Zn2+ transport and related redox kinetics to effectively improve the electrochemical responses. Furthermore, the challenges of designing novel MnO2 cathodes have also been prospected in detail to provide possible guidelines for the development of Zn/MnO2 batteries.
doi_str_mv 10.1039/d2nr03264c
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2720929583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724247651</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-d848c2541cc2fdefca5658bc2578f1635c9e12446b3253c6b701acff196a7b2a3</originalsourceid><addsrcrecordid>eNpdjk1LAzEQhoMoWD8u_oKAF6GsTSbZ7O6xFLVCpRe99FKys4nduiY1yQr-e3dRPHial-GZdx5Crji75UxUswZcYAKUxCMyASZZJkQBx39ZyVNyFuOeMVUJJSYkzZtP7dBE2jqadoYG89p3OrXeUW_pW-tMajGOGXXa-aZFupzONg6mw0UywWpsdUdT0C4efEhjj_7oje8j3bjZk1sDNZ3BFDzuzHsbU_i6ICdWd9Fc_s5z8nJ_97xYZqv1w-NivsoOXKqUNaUsEXLJEcE2xqLOVV7Ww6ooLVcix8pwkFLVAnKBqi4Y12gtr5QuatDinNz89B6CH5Ri2g7_0XSddqPfFgpgFVR5KQb0-h-6931wg91ISZCFyrn4BqHEazg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724247651</pqid></control><display><type>article</type><title>Advances in the regulation of kinetics of cathodic H+/Zn2+ interfacial transport in aqueous Zn/MnO2 electrochemistry</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Shang, Zhoutai ; Wang, Shoujuan ; Zhang, Hong ; Zhang, Wenli ; Lu, Songtao ; Lu, Ke</creator><creatorcontrib>Shang, Zhoutai ; Wang, Shoujuan ; Zhang, Hong ; Zhang, Wenli ; Lu, Songtao ; Lu, Ke</creatorcontrib><description>Rechargeable aqueous Zn–MnO2 energy storage systems have attracted extensive attention owing to their high theoretical capacity and non-flammable mild aqueous electrolytes. Nevertheless, the complicated reaction mechanism of a MnO2-based cathode severely restricts its further development. Therefore, it is crucial to clarify the kinetics of H+/Zn2+ interfacial transport in the MnO2 cathode for realizing controllable regulation of interfacial ion transport and then realizing high capacity and long lifespan. Recently, based on different reaction mechanisms, various strategies have been employed to improve the performance of aqueous Zn/MnO2 cells, such as surface modifications and structural engineering. Herein, we systematically summarize the recent advances in the modulation of interfacial H+/Zn2+ transport and related redox kinetics to effectively improve the electrochemical responses. Furthermore, the challenges of designing novel MnO2 cathodes have also been prospected in detail to provide possible guidelines for the development of Zn/MnO2 batteries.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d2nr03264c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aqueous electrolytes ; Cathodes ; Electrochemistry ; Electrolytic cells ; Energy storage ; Ion transport ; Kinetics ; Manganese dioxide ; Reaction mechanisms ; Storage systems ; Structural engineering</subject><ispartof>Nanoscale, 2022-10, Vol.14 (39), p.14433-14454</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shang, Zhoutai</creatorcontrib><creatorcontrib>Wang, Shoujuan</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Zhang, Wenli</creatorcontrib><creatorcontrib>Lu, Songtao</creatorcontrib><creatorcontrib>Lu, Ke</creatorcontrib><title>Advances in the regulation of kinetics of cathodic H+/Zn2+ interfacial transport in aqueous Zn/MnO2 electrochemistry</title><title>Nanoscale</title><description>Rechargeable aqueous Zn–MnO2 energy storage systems have attracted extensive attention owing to their high theoretical capacity and non-flammable mild aqueous electrolytes. Nevertheless, the complicated reaction mechanism of a MnO2-based cathode severely restricts its further development. Therefore, it is crucial to clarify the kinetics of H+/Zn2+ interfacial transport in the MnO2 cathode for realizing controllable regulation of interfacial ion transport and then realizing high capacity and long lifespan. Recently, based on different reaction mechanisms, various strategies have been employed to improve the performance of aqueous Zn/MnO2 cells, such as surface modifications and structural engineering. Herein, we systematically summarize the recent advances in the modulation of interfacial H+/Zn2+ transport and related redox kinetics to effectively improve the electrochemical responses. Furthermore, the challenges of designing novel MnO2 cathodes have also been prospected in detail to provide possible guidelines for the development of Zn/MnO2 batteries.</description><subject>Aqueous electrolytes</subject><subject>Cathodes</subject><subject>Electrochemistry</subject><subject>Electrolytic cells</subject><subject>Energy storage</subject><subject>Ion transport</subject><subject>Kinetics</subject><subject>Manganese dioxide</subject><subject>Reaction mechanisms</subject><subject>Storage systems</subject><subject>Structural engineering</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdjk1LAzEQhoMoWD8u_oKAF6GsTSbZ7O6xFLVCpRe99FKys4nduiY1yQr-e3dRPHial-GZdx5Crji75UxUswZcYAKUxCMyASZZJkQBx39ZyVNyFuOeMVUJJSYkzZtP7dBE2jqadoYG89p3OrXeUW_pW-tMajGOGXXa-aZFupzONg6mw0UywWpsdUdT0C4efEhjj_7oje8j3bjZk1sDNZ3BFDzuzHsbU_i6ICdWd9Fc_s5z8nJ_97xYZqv1w-NivsoOXKqUNaUsEXLJEcE2xqLOVV7Ww6ooLVcix8pwkFLVAnKBqi4Y12gtr5QuatDinNz89B6CH5Ri2g7_0XSddqPfFgpgFVR5KQb0-h-6931wg91ISZCFyrn4BqHEazg</recordid><startdate>20221013</startdate><enddate>20221013</enddate><creator>Shang, Zhoutai</creator><creator>Wang, Shoujuan</creator><creator>Zhang, Hong</creator><creator>Zhang, Wenli</creator><creator>Lu, Songtao</creator><creator>Lu, Ke</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20221013</creationdate><title>Advances in the regulation of kinetics of cathodic H+/Zn2+ interfacial transport in aqueous Zn/MnO2 electrochemistry</title><author>Shang, Zhoutai ; Wang, Shoujuan ; Zhang, Hong ; Zhang, Wenli ; Lu, Songtao ; Lu, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-d848c2541cc2fdefca5658bc2578f1635c9e12446b3253c6b701acff196a7b2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aqueous electrolytes</topic><topic>Cathodes</topic><topic>Electrochemistry</topic><topic>Electrolytic cells</topic><topic>Energy storage</topic><topic>Ion transport</topic><topic>Kinetics</topic><topic>Manganese dioxide</topic><topic>Reaction mechanisms</topic><topic>Storage systems</topic><topic>Structural engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Zhoutai</creatorcontrib><creatorcontrib>Wang, Shoujuan</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Zhang, Wenli</creatorcontrib><creatorcontrib>Lu, Songtao</creatorcontrib><creatorcontrib>Lu, Ke</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Zhoutai</au><au>Wang, Shoujuan</au><au>Zhang, Hong</au><au>Zhang, Wenli</au><au>Lu, Songtao</au><au>Lu, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in the regulation of kinetics of cathodic H+/Zn2+ interfacial transport in aqueous Zn/MnO2 electrochemistry</atitle><jtitle>Nanoscale</jtitle><date>2022-10-13</date><risdate>2022</risdate><volume>14</volume><issue>39</issue><spage>14433</spage><epage>14454</epage><pages>14433-14454</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Rechargeable aqueous Zn–MnO2 energy storage systems have attracted extensive attention owing to their high theoretical capacity and non-flammable mild aqueous electrolytes. Nevertheless, the complicated reaction mechanism of a MnO2-based cathode severely restricts its further development. Therefore, it is crucial to clarify the kinetics of H+/Zn2+ interfacial transport in the MnO2 cathode for realizing controllable regulation of interfacial ion transport and then realizing high capacity and long lifespan. Recently, based on different reaction mechanisms, various strategies have been employed to improve the performance of aqueous Zn/MnO2 cells, such as surface modifications and structural engineering. Herein, we systematically summarize the recent advances in the modulation of interfacial H+/Zn2+ transport and related redox kinetics to effectively improve the electrochemical responses. Furthermore, the challenges of designing novel MnO2 cathodes have also been prospected in detail to provide possible guidelines for the development of Zn/MnO2 batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2nr03264c</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2022-10, Vol.14 (39), p.14433-14454
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2720929583
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Aqueous electrolytes
Cathodes
Electrochemistry
Electrolytic cells
Energy storage
Ion transport
Kinetics
Manganese dioxide
Reaction mechanisms
Storage systems
Structural engineering
title Advances in the regulation of kinetics of cathodic H+/Zn2+ interfacial transport in aqueous Zn/MnO2 electrochemistry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20the%20regulation%20of%20kinetics%20of%20cathodic%20H+/Zn2+%20interfacial%20transport%20in%20aqueous%20Zn/MnO2%20electrochemistry&rft.jtitle=Nanoscale&rft.au=Shang,%20Zhoutai&rft.date=2022-10-13&rft.volume=14&rft.issue=39&rft.spage=14433&rft.epage=14454&rft.pages=14433-14454&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d2nr03264c&rft_dat=%3Cproquest%3E2724247651%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p146t-d848c2541cc2fdefca5658bc2578f1635c9e12446b3253c6b701acff196a7b2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2724247651&rft_id=info:pmid/&rfr_iscdi=true