Loading…

A microfluidic-based nanoscope

A novel technique for noninvasively measuring the shapes of walls with resolution approaching tens of nanometers is presented. The nanoscope measures local wall position by measuring the velocity of a fluid with micron-scale spatial resolution as it flows over a surface. The location of the wall is...

Full description

Saved in:
Bibliographic Details
Published in:Experiments in fluids 2002-11, Vol.33 (5), p.613-619
Main Authors: STONE, S. W, MEINHART, C. D, WERELEY, S. T
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel technique for noninvasively measuring the shapes of walls with resolution approaching tens of nanometers is presented. The nanoscope measures local wall position by measuring the velocity of a fluid with micron-scale spatial resolution as it flows over a surface. The location of the wall is estimated by assuming the no-slip velocity condition at the wall and extrapolating the velocity profile to zero. Nanoscope measurements were obtained in a 30 x 300-micron channel. The wall shape of the glass microchannel was determined to be flat to within a root mean square uncertainty of 62 nm. Numerical simulations show that noise in the velocity measurements contributes significantly to uncertainty in wall position. The technique can be used to measure surfaces that are immersed in liquids and in geometries that do not provide exposed surfaces, where traditional nanoscope techniques such as scanning probe microscopes (SPM) are not applicable. (Author)
ISSN:0723-4864
1432-1114
DOI:10.1007/s00348-001-0379-2