Loading…

3-D radar imaging using range migration techniques

An imaging system with three-dimensional (3-D) capability can be implemented by using a stepped frequency radar which synthesizes a two-dimensional (2-D) planar aperture. A 3-D image can be formed by coherently integrating the backscatter data over the measured frequency band and the two spatial coo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2000-05, Vol.48 (5), p.728-737
Main Authors: Lopez-Sanchez, J.M., Fortuny-Guasch, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An imaging system with three-dimensional (3-D) capability can be implemented by using a stepped frequency radar which synthesizes a two-dimensional (2-D) planar aperture. A 3-D image can be formed by coherently integrating the backscatter data over the measured frequency band and the two spatial coordinates of the 2-D synthetic aperture. This paper presents a near-field 3-D synthetic aperture radar (SAR) imaging algorithm. This algorithm is an extension of the 2-D range migration algorithm (RMA). The presented formulation is justified by using the method of the stationary phase (MSP). Implementation aspects including the sampling criteria, resolutions, and computational complexity are assessed. The high computational efficiency and accurate image reconstruction of the algorithm are demonstrated both with numerical simulations and measurements using an outdoor linear SAR system.
ISSN:0018-926X
1558-2221
DOI:10.1109/8.855491