Loading…

Formation and Transformation of Polystyrene-block-poly(2-vinylpyridine) Hexasomes in the Solvent Exchange

The generation of inverse micellar nanostructures, especially those with open channels, using commercially available diblock copolymers (BCP), is vital for their wide applications in drug delivery and catalyst templating. However, the rigid requirements for forming inverse morphologies, such as the...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2022-10, Vol.38 (41), p.12441-12449
Main Authors: Zhang, Qiuya, Lu, Mengfan, Wu, Hanyu, Zhang, Lu, Feng, Xunda, Jin, Zhaoxia
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a255t-bf0ac8b1da0caa6331a590bc52c478cb8036b94c63ce391a01ab135c120416b3
cites cdi_FETCH-LOGICAL-a255t-bf0ac8b1da0caa6331a590bc52c478cb8036b94c63ce391a01ab135c120416b3
container_end_page 12449
container_issue 41
container_start_page 12441
container_title Langmuir
container_volume 38
creator Zhang, Qiuya
Lu, Mengfan
Wu, Hanyu
Zhang, Lu
Feng, Xunda
Jin, Zhaoxia
description The generation of inverse micellar nanostructures, especially those with open channels, using commercially available diblock copolymers (BCP), is vital for their wide applications in drug delivery and catalyst templating. However, the rigid requirements for forming inverse morphologies, such as the highly asymmetric molecular structures, the semicrystalline motifs, and concentrated solutions of diblock copolymers, represent obstacles to the development of successful strategies. In this study, the inverse polystyrene-block-poly­(2-vinylpyridine) (PS30K-b-P2VP8.5K) micelles, i.e., the hexasomes with p6mm lattice, were generated through a modified solvent exchange via adding d-tartaric acid (d-TA) in the nonsolvent. Various intermediate morphologies have been identified with the change of d-TA concentration. Interestingly, in the high d-TA concentration (∼20 mg/mL), the hexasomes with close-packed hoops changed to mesoporous spheres with regularly packed perpendicular cylindrical channels (VD‑TA: VBCP 6:100), and further to the mesoporous spheres with gyri-like open pores (VD‑TA: VBCP > 15:100) with the increasing acidity in the mixed solvent. This study presents a simple and economical pathway for fabricating PS30K-b-P2VP8.5K hexasomes and first demonstrates these hexasomes can be modified to the morphology with open channels that will benefit their further applications.
doi_str_mv 10.1021/acs.langmuir.2c01568
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2721636671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721636671</sourcerecordid><originalsourceid>FETCH-LOGICAL-a255t-bf0ac8b1da0caa6331a590bc52c478cb8036b94c63ce391a01ab135c120416b3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBhx8LAcX_8ROckRVoUiVQKJ3y3Yd6pLYwU6r5u1J1cKR00qzM6udD4B7gqcEU_KoTJrWyn82Oxen1GDCRXEBRoRTjHhB80swwnnGUJ4Jdg1uUtpijEuWlSPgnkNsVOeCh8qv4Soqn6o_KVTwPdR96vpovUW6DuYLtYMyoWjvfF-3fXRr5-0DXNiDSqGxCToPu42FH6HeW9_B-cFsht_sLbiqVJ3s3XmOwep5vpot0PLt5XX2tESKct4hXWFlCk3WChulBGNE8RJrw6nJ8sLoAjOhy8wIZiwricJEacK4IRRnRGg2BpPT2TaG751NnWxcMrYe-NiwS5LmlAgmRE4Ga3aymhhSiraSbXSNir0kWB7BygGs_AUrz2CHGD7Fjttt2EU_1Pk_8gMitoIa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721636671</pqid></control><display><type>article</type><title>Formation and Transformation of Polystyrene-block-poly(2-vinylpyridine) Hexasomes in the Solvent Exchange</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhang, Qiuya ; Lu, Mengfan ; Wu, Hanyu ; Zhang, Lu ; Feng, Xunda ; Jin, Zhaoxia</creator><creatorcontrib>Zhang, Qiuya ; Lu, Mengfan ; Wu, Hanyu ; Zhang, Lu ; Feng, Xunda ; Jin, Zhaoxia</creatorcontrib><description>The generation of inverse micellar nanostructures, especially those with open channels, using commercially available diblock copolymers (BCP), is vital for their wide applications in drug delivery and catalyst templating. However, the rigid requirements for forming inverse morphologies, such as the highly asymmetric molecular structures, the semicrystalline motifs, and concentrated solutions of diblock copolymers, represent obstacles to the development of successful strategies. In this study, the inverse polystyrene-block-poly­(2-vinylpyridine) (PS30K-b-P2VP8.5K) micelles, i.e., the hexasomes with p6mm lattice, were generated through a modified solvent exchange via adding d-tartaric acid (d-TA) in the nonsolvent. Various intermediate morphologies have been identified with the change of d-TA concentration. Interestingly, in the high d-TA concentration (∼20 mg/mL), the hexasomes with close-packed hoops changed to mesoporous spheres with regularly packed perpendicular cylindrical channels (VD‑TA: VBCP 6:100), and further to the mesoporous spheres with gyri-like open pores (VD‑TA: VBCP &gt; 15:100) with the increasing acidity in the mixed solvent. This study presents a simple and economical pathway for fabricating PS30K-b-P2VP8.5K hexasomes and first demonstrates these hexasomes can be modified to the morphology with open channels that will benefit their further applications.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.2c01568</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Langmuir, 2022-10, Vol.38 (41), p.12441-12449</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a255t-bf0ac8b1da0caa6331a590bc52c478cb8036b94c63ce391a01ab135c120416b3</citedby><cites>FETCH-LOGICAL-a255t-bf0ac8b1da0caa6331a590bc52c478cb8036b94c63ce391a01ab135c120416b3</cites><orcidid>0000-0002-4528-0769 ; 0000-0003-1537-9933 ; 0000-0002-6108-0636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, Qiuya</creatorcontrib><creatorcontrib>Lu, Mengfan</creatorcontrib><creatorcontrib>Wu, Hanyu</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Feng, Xunda</creatorcontrib><creatorcontrib>Jin, Zhaoxia</creatorcontrib><title>Formation and Transformation of Polystyrene-block-poly(2-vinylpyridine) Hexasomes in the Solvent Exchange</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The generation of inverse micellar nanostructures, especially those with open channels, using commercially available diblock copolymers (BCP), is vital for their wide applications in drug delivery and catalyst templating. However, the rigid requirements for forming inverse morphologies, such as the highly asymmetric molecular structures, the semicrystalline motifs, and concentrated solutions of diblock copolymers, represent obstacles to the development of successful strategies. In this study, the inverse polystyrene-block-poly­(2-vinylpyridine) (PS30K-b-P2VP8.5K) micelles, i.e., the hexasomes with p6mm lattice, were generated through a modified solvent exchange via adding d-tartaric acid (d-TA) in the nonsolvent. Various intermediate morphologies have been identified with the change of d-TA concentration. Interestingly, in the high d-TA concentration (∼20 mg/mL), the hexasomes with close-packed hoops changed to mesoporous spheres with regularly packed perpendicular cylindrical channels (VD‑TA: VBCP 6:100), and further to the mesoporous spheres with gyri-like open pores (VD‑TA: VBCP &gt; 15:100) with the increasing acidity in the mixed solvent. This study presents a simple and economical pathway for fabricating PS30K-b-P2VP8.5K hexasomes and first demonstrates these hexasomes can be modified to the morphology with open channels that will benefit their further applications.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBhx8LAcX_8ROckRVoUiVQKJ3y3Yd6pLYwU6r5u1J1cKR00qzM6udD4B7gqcEU_KoTJrWyn82Oxen1GDCRXEBRoRTjHhB80swwnnGUJ4Jdg1uUtpijEuWlSPgnkNsVOeCh8qv4Soqn6o_KVTwPdR96vpovUW6DuYLtYMyoWjvfF-3fXRr5-0DXNiDSqGxCToPu42FH6HeW9_B-cFsht_sLbiqVJ3s3XmOwep5vpot0PLt5XX2tESKct4hXWFlCk3WChulBGNE8RJrw6nJ8sLoAjOhy8wIZiwricJEacK4IRRnRGg2BpPT2TaG751NnWxcMrYe-NiwS5LmlAgmRE4Ga3aymhhSiraSbXSNir0kWB7BygGs_AUrz2CHGD7Fjttt2EU_1Pk_8gMitoIa</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Zhang, Qiuya</creator><creator>Lu, Mengfan</creator><creator>Wu, Hanyu</creator><creator>Zhang, Lu</creator><creator>Feng, Xunda</creator><creator>Jin, Zhaoxia</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4528-0769</orcidid><orcidid>https://orcid.org/0000-0003-1537-9933</orcidid><orcidid>https://orcid.org/0000-0002-6108-0636</orcidid></search><sort><creationdate>20221018</creationdate><title>Formation and Transformation of Polystyrene-block-poly(2-vinylpyridine) Hexasomes in the Solvent Exchange</title><author>Zhang, Qiuya ; Lu, Mengfan ; Wu, Hanyu ; Zhang, Lu ; Feng, Xunda ; Jin, Zhaoxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a255t-bf0ac8b1da0caa6331a590bc52c478cb8036b94c63ce391a01ab135c120416b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qiuya</creatorcontrib><creatorcontrib>Lu, Mengfan</creatorcontrib><creatorcontrib>Wu, Hanyu</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Feng, Xunda</creatorcontrib><creatorcontrib>Jin, Zhaoxia</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qiuya</au><au>Lu, Mengfan</au><au>Wu, Hanyu</au><au>Zhang, Lu</au><au>Feng, Xunda</au><au>Jin, Zhaoxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation and Transformation of Polystyrene-block-poly(2-vinylpyridine) Hexasomes in the Solvent Exchange</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2022-10-18</date><risdate>2022</risdate><volume>38</volume><issue>41</issue><spage>12441</spage><epage>12449</epage><pages>12441-12449</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>The generation of inverse micellar nanostructures, especially those with open channels, using commercially available diblock copolymers (BCP), is vital for their wide applications in drug delivery and catalyst templating. However, the rigid requirements for forming inverse morphologies, such as the highly asymmetric molecular structures, the semicrystalline motifs, and concentrated solutions of diblock copolymers, represent obstacles to the development of successful strategies. In this study, the inverse polystyrene-block-poly­(2-vinylpyridine) (PS30K-b-P2VP8.5K) micelles, i.e., the hexasomes with p6mm lattice, were generated through a modified solvent exchange via adding d-tartaric acid (d-TA) in the nonsolvent. Various intermediate morphologies have been identified with the change of d-TA concentration. Interestingly, in the high d-TA concentration (∼20 mg/mL), the hexasomes with close-packed hoops changed to mesoporous spheres with regularly packed perpendicular cylindrical channels (VD‑TA: VBCP 6:100), and further to the mesoporous spheres with gyri-like open pores (VD‑TA: VBCP &gt; 15:100) with the increasing acidity in the mixed solvent. This study presents a simple and economical pathway for fabricating PS30K-b-P2VP8.5K hexasomes and first demonstrates these hexasomes can be modified to the morphology with open channels that will benefit their further applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.langmuir.2c01568</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4528-0769</orcidid><orcidid>https://orcid.org/0000-0003-1537-9933</orcidid><orcidid>https://orcid.org/0000-0002-6108-0636</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2022-10, Vol.38 (41), p.12441-12449
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_2721636671
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Formation and Transformation of Polystyrene-block-poly(2-vinylpyridine) Hexasomes in the Solvent Exchange
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20and%20Transformation%20of%20Polystyrene-block-poly(2-vinylpyridine)%20Hexasomes%20in%20the%20Solvent%20Exchange&rft.jtitle=Langmuir&rft.au=Zhang,%20Qiuya&rft.date=2022-10-18&rft.volume=38&rft.issue=41&rft.spage=12441&rft.epage=12449&rft.pages=12441-12449&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.2c01568&rft_dat=%3Cproquest_cross%3E2721636671%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a255t-bf0ac8b1da0caa6331a590bc52c478cb8036b94c63ce391a01ab135c120416b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2721636671&rft_id=info:pmid/&rfr_iscdi=true