Loading…
Formation and Transformation of Polystyrene-block-poly(2-vinylpyridine) Hexasomes in the Solvent Exchange
The generation of inverse micellar nanostructures, especially those with open channels, using commercially available diblock copolymers (BCP), is vital for their wide applications in drug delivery and catalyst templating. However, the rigid requirements for forming inverse morphologies, such as the...
Saved in:
Published in: | Langmuir 2022-10, Vol.38 (41), p.12441-12449 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a255t-bf0ac8b1da0caa6331a590bc52c478cb8036b94c63ce391a01ab135c120416b3 |
---|---|
cites | cdi_FETCH-LOGICAL-a255t-bf0ac8b1da0caa6331a590bc52c478cb8036b94c63ce391a01ab135c120416b3 |
container_end_page | 12449 |
container_issue | 41 |
container_start_page | 12441 |
container_title | Langmuir |
container_volume | 38 |
creator | Zhang, Qiuya Lu, Mengfan Wu, Hanyu Zhang, Lu Feng, Xunda Jin, Zhaoxia |
description | The generation of inverse micellar nanostructures, especially those with open channels, using commercially available diblock copolymers (BCP), is vital for their wide applications in drug delivery and catalyst templating. However, the rigid requirements for forming inverse morphologies, such as the highly asymmetric molecular structures, the semicrystalline motifs, and concentrated solutions of diblock copolymers, represent obstacles to the development of successful strategies. In this study, the inverse polystyrene-block-poly(2-vinylpyridine) (PS30K-b-P2VP8.5K) micelles, i.e., the hexasomes with p6mm lattice, were generated through a modified solvent exchange via adding d-tartaric acid (d-TA) in the nonsolvent. Various intermediate morphologies have been identified with the change of d-TA concentration. Interestingly, in the high d-TA concentration (∼20 mg/mL), the hexasomes with close-packed hoops changed to mesoporous spheres with regularly packed perpendicular cylindrical channels (VD‑TA: VBCP 6:100), and further to the mesoporous spheres with gyri-like open pores (VD‑TA: VBCP > 15:100) with the increasing acidity in the mixed solvent. This study presents a simple and economical pathway for fabricating PS30K-b-P2VP8.5K hexasomes and first demonstrates these hexasomes can be modified to the morphology with open channels that will benefit their further applications. |
doi_str_mv | 10.1021/acs.langmuir.2c01568 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2721636671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721636671</sourcerecordid><originalsourceid>FETCH-LOGICAL-a255t-bf0ac8b1da0caa6331a590bc52c478cb8036b94c63ce391a01ab135c120416b3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBhx8LAcX_8ROckRVoUiVQKJ3y3Yd6pLYwU6r5u1J1cKR00qzM6udD4B7gqcEU_KoTJrWyn82Oxen1GDCRXEBRoRTjHhB80swwnnGUJ4Jdg1uUtpijEuWlSPgnkNsVOeCh8qv4Soqn6o_KVTwPdR96vpovUW6DuYLtYMyoWjvfF-3fXRr5-0DXNiDSqGxCToPu42FH6HeW9_B-cFsht_sLbiqVJ3s3XmOwep5vpot0PLt5XX2tESKct4hXWFlCk3WChulBGNE8RJrw6nJ8sLoAjOhy8wIZiwricJEacK4IRRnRGg2BpPT2TaG751NnWxcMrYe-NiwS5LmlAgmRE4Ga3aymhhSiraSbXSNir0kWB7BygGs_AUrz2CHGD7Fjttt2EU_1Pk_8gMitoIa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721636671</pqid></control><display><type>article</type><title>Formation and Transformation of Polystyrene-block-poly(2-vinylpyridine) Hexasomes in the Solvent Exchange</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zhang, Qiuya ; Lu, Mengfan ; Wu, Hanyu ; Zhang, Lu ; Feng, Xunda ; Jin, Zhaoxia</creator><creatorcontrib>Zhang, Qiuya ; Lu, Mengfan ; Wu, Hanyu ; Zhang, Lu ; Feng, Xunda ; Jin, Zhaoxia</creatorcontrib><description>The generation of inverse micellar nanostructures, especially those with open channels, using commercially available diblock copolymers (BCP), is vital for their wide applications in drug delivery and catalyst templating. However, the rigid requirements for forming inverse morphologies, such as the highly asymmetric molecular structures, the semicrystalline motifs, and concentrated solutions of diblock copolymers, represent obstacles to the development of successful strategies. In this study, the inverse polystyrene-block-poly(2-vinylpyridine) (PS30K-b-P2VP8.5K) micelles, i.e., the hexasomes with p6mm lattice, were generated through a modified solvent exchange via adding d-tartaric acid (d-TA) in the nonsolvent. Various intermediate morphologies have been identified with the change of d-TA concentration. Interestingly, in the high d-TA concentration (∼20 mg/mL), the hexasomes with close-packed hoops changed to mesoporous spheres with regularly packed perpendicular cylindrical channels (VD‑TA: VBCP 6:100), and further to the mesoporous spheres with gyri-like open pores (VD‑TA: VBCP > 15:100) with the increasing acidity in the mixed solvent. This study presents a simple and economical pathway for fabricating PS30K-b-P2VP8.5K hexasomes and first demonstrates these hexasomes can be modified to the morphology with open channels that will benefit their further applications.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.2c01568</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Langmuir, 2022-10, Vol.38 (41), p.12441-12449</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a255t-bf0ac8b1da0caa6331a590bc52c478cb8036b94c63ce391a01ab135c120416b3</citedby><cites>FETCH-LOGICAL-a255t-bf0ac8b1da0caa6331a590bc52c478cb8036b94c63ce391a01ab135c120416b3</cites><orcidid>0000-0002-4528-0769 ; 0000-0003-1537-9933 ; 0000-0002-6108-0636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, Qiuya</creatorcontrib><creatorcontrib>Lu, Mengfan</creatorcontrib><creatorcontrib>Wu, Hanyu</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Feng, Xunda</creatorcontrib><creatorcontrib>Jin, Zhaoxia</creatorcontrib><title>Formation and Transformation of Polystyrene-block-poly(2-vinylpyridine) Hexasomes in the Solvent Exchange</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The generation of inverse micellar nanostructures, especially those with open channels, using commercially available diblock copolymers (BCP), is vital for their wide applications in drug delivery and catalyst templating. However, the rigid requirements for forming inverse morphologies, such as the highly asymmetric molecular structures, the semicrystalline motifs, and concentrated solutions of diblock copolymers, represent obstacles to the development of successful strategies. In this study, the inverse polystyrene-block-poly(2-vinylpyridine) (PS30K-b-P2VP8.5K) micelles, i.e., the hexasomes with p6mm lattice, were generated through a modified solvent exchange via adding d-tartaric acid (d-TA) in the nonsolvent. Various intermediate morphologies have been identified with the change of d-TA concentration. Interestingly, in the high d-TA concentration (∼20 mg/mL), the hexasomes with close-packed hoops changed to mesoporous spheres with regularly packed perpendicular cylindrical channels (VD‑TA: VBCP 6:100), and further to the mesoporous spheres with gyri-like open pores (VD‑TA: VBCP > 15:100) with the increasing acidity in the mixed solvent. This study presents a simple and economical pathway for fabricating PS30K-b-P2VP8.5K hexasomes and first demonstrates these hexasomes can be modified to the morphology with open channels that will benefit their further applications.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBhx8LAcX_8ROckRVoUiVQKJ3y3Yd6pLYwU6r5u1J1cKR00qzM6udD4B7gqcEU_KoTJrWyn82Oxen1GDCRXEBRoRTjHhB80swwnnGUJ4Jdg1uUtpijEuWlSPgnkNsVOeCh8qv4Soqn6o_KVTwPdR96vpovUW6DuYLtYMyoWjvfF-3fXRr5-0DXNiDSqGxCToPu42FH6HeW9_B-cFsht_sLbiqVJ3s3XmOwep5vpot0PLt5XX2tESKct4hXWFlCk3WChulBGNE8RJrw6nJ8sLoAjOhy8wIZiwricJEacK4IRRnRGg2BpPT2TaG751NnWxcMrYe-NiwS5LmlAgmRE4Ga3aymhhSiraSbXSNir0kWB7BygGs_AUrz2CHGD7Fjttt2EU_1Pk_8gMitoIa</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Zhang, Qiuya</creator><creator>Lu, Mengfan</creator><creator>Wu, Hanyu</creator><creator>Zhang, Lu</creator><creator>Feng, Xunda</creator><creator>Jin, Zhaoxia</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4528-0769</orcidid><orcidid>https://orcid.org/0000-0003-1537-9933</orcidid><orcidid>https://orcid.org/0000-0002-6108-0636</orcidid></search><sort><creationdate>20221018</creationdate><title>Formation and Transformation of Polystyrene-block-poly(2-vinylpyridine) Hexasomes in the Solvent Exchange</title><author>Zhang, Qiuya ; Lu, Mengfan ; Wu, Hanyu ; Zhang, Lu ; Feng, Xunda ; Jin, Zhaoxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a255t-bf0ac8b1da0caa6331a590bc52c478cb8036b94c63ce391a01ab135c120416b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qiuya</creatorcontrib><creatorcontrib>Lu, Mengfan</creatorcontrib><creatorcontrib>Wu, Hanyu</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Feng, Xunda</creatorcontrib><creatorcontrib>Jin, Zhaoxia</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qiuya</au><au>Lu, Mengfan</au><au>Wu, Hanyu</au><au>Zhang, Lu</au><au>Feng, Xunda</au><au>Jin, Zhaoxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation and Transformation of Polystyrene-block-poly(2-vinylpyridine) Hexasomes in the Solvent Exchange</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2022-10-18</date><risdate>2022</risdate><volume>38</volume><issue>41</issue><spage>12441</spage><epage>12449</epage><pages>12441-12449</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>The generation of inverse micellar nanostructures, especially those with open channels, using commercially available diblock copolymers (BCP), is vital for their wide applications in drug delivery and catalyst templating. However, the rigid requirements for forming inverse morphologies, such as the highly asymmetric molecular structures, the semicrystalline motifs, and concentrated solutions of diblock copolymers, represent obstacles to the development of successful strategies. In this study, the inverse polystyrene-block-poly(2-vinylpyridine) (PS30K-b-P2VP8.5K) micelles, i.e., the hexasomes with p6mm lattice, were generated through a modified solvent exchange via adding d-tartaric acid (d-TA) in the nonsolvent. Various intermediate morphologies have been identified with the change of d-TA concentration. Interestingly, in the high d-TA concentration (∼20 mg/mL), the hexasomes with close-packed hoops changed to mesoporous spheres with regularly packed perpendicular cylindrical channels (VD‑TA: VBCP 6:100), and further to the mesoporous spheres with gyri-like open pores (VD‑TA: VBCP > 15:100) with the increasing acidity in the mixed solvent. This study presents a simple and economical pathway for fabricating PS30K-b-P2VP8.5K hexasomes and first demonstrates these hexasomes can be modified to the morphology with open channels that will benefit their further applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.langmuir.2c01568</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4528-0769</orcidid><orcidid>https://orcid.org/0000-0003-1537-9933</orcidid><orcidid>https://orcid.org/0000-0002-6108-0636</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2022-10, Vol.38 (41), p.12441-12449 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_2721636671 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Formation and Transformation of Polystyrene-block-poly(2-vinylpyridine) Hexasomes in the Solvent Exchange |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20and%20Transformation%20of%20Polystyrene-block-poly(2-vinylpyridine)%20Hexasomes%20in%20the%20Solvent%20Exchange&rft.jtitle=Langmuir&rft.au=Zhang,%20Qiuya&rft.date=2022-10-18&rft.volume=38&rft.issue=41&rft.spage=12441&rft.epage=12449&rft.pages=12441-12449&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.2c01568&rft_dat=%3Cproquest_cross%3E2721636671%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a255t-bf0ac8b1da0caa6331a590bc52c478cb8036b94c63ce391a01ab135c120416b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2721636671&rft_id=info:pmid/&rfr_iscdi=true |