Loading…
A Fano Cavity–Photon Interface for Directional Suppression of Spectral Diffusion of a Single Perovskite Nanoplatelet
Colloidal nanocrystals that are capable of mass production with wet chemical synthesis have long been proposed as color-tunable, scalable quantum emitters for information processing and communication. However, they constantly suffer from spectral diffusion due to being exposed to a noisy electrostat...
Saved in:
Published in: | Nano letters 2022-10, Vol.22 (20), p.8274-8280 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Colloidal nanocrystals that are capable of mass production with wet chemical synthesis have long been proposed as color-tunable, scalable quantum emitters for information processing and communication. However, they constantly suffer from spectral diffusion due to being exposed to a noisy electrostatic environment. Herein we demonstrate a cavity–photon interface (CPI) which effectively suppresses the temperature-activated spectral diffusion (SD) of a single perovskite nanoplatelet (NPL) up to 40 K. The spectrally stabilized single-photon emission is achieved at a specific emission direction corresponding to an inhibited dipole moment of the NPL as the result of the Fano coupling between the two photon dissipation channels of the NPL. Our results shed light on the nature of the SD of perovskite nanocrystals and offer a general cavity quantum electrodynamic scheme that controls the brightness and spectral dynamics of a single-photon emitter. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.2c03073 |