Loading…
Methods of minimizing free energies directly
Standard simulation techniques can be found in the literature to evaluate free energies of materials by thermodynamic integration. These technqieus, though straightforward, are demanding computationally as one has to evaluate an equilibrium internal energy at a succession of temperatures. However, i...
Saved in:
Published in: | Journal of phase equilibria 1997-12, Vol.18 (6), p.544-545 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c248t-11fca5a55f4c93d2ddc273349c3073b348d80596b4a4f3304f3a60deb64976173 |
container_end_page | 545 |
container_issue | 6 |
container_start_page | 544 |
container_title | Journal of phase equilibria |
container_volume | 18 |
creator | SUTTON, A. P HAIRIE, A HAIRIE, F LEBOUVIER, B NOUET, G PAUMIER, E RALANTOSON, N |
description | Standard simulation techniques can be found in the literature to evaluate free energies of materials by thermodynamic integration. These technqieus, though straightforward, are demanding computationally as one has to evaluate an equilibrium internal energy at a succession of temperatures. However, if one is concerned with the free energy of a solid, or the excess free energy of a defect within the solid, at temperatures where atoms remain confined to potential wells, then a variety of simpler and much faster direct methods of minimizing free energies can be adopted. The direct methods are based on the quasi-harmonic approximation (QA) to the free energy. Here one recognizes that atoms vibrate about particular mean positions. Rather than working with fixed average atomic positions, which do not vary with temperature, one regards these mean positions as variational parameters with which the free energy of the system can be minimized. In this way, the QA captures some of the anharmonicity in the exact free energy that is altogether absent in the harmonic approximation. It has been shown that the QA is a remarkably successful technique for evaluating structures and excess free energies of defects in crystalline solids at elevated temperatures. |
doi_str_mv | 10.1007/BF02665808 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27227987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27227987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c248t-11fca5a55f4c93d2ddc273349c3073b348d80596b4a4f3304f3a60deb64976173</originalsourceid><addsrcrecordid>eNpFkLtOAzEURC0EEiHQ8AVbIArEwvXbW0JEACmIBuqVY18Ho30Ee1MkX0-iRNDMTHFmiiHkksIdBdD3j1NgSkkD5oiMqBSipMDZ8TaDFGWlqTglZzl_A4BUFEbk9g2Hr97nog9FG7vYxk3sFkVIiAV2mBYRc-FjQjc063NyEmyT8eLgY_I5ffqYvJSz9-fXycOsdEyYoaQ0OCutlEG4invmvWOac1E5DprPuTDegKzUXFgROIetWAUe50pUWlHNx-R6v7tM_c8K81C3MTtsGtthv8o104zpyuzAmz3oUp9zwlAvU2xtWtcU6t0h9f8hW_jqsGqzs01ItnMx_zUYaMOB8V9H2V1j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27227987</pqid></control><display><type>article</type><title>Methods of minimizing free energies directly</title><source>Springer Link</source><creator>SUTTON, A. P ; HAIRIE, A ; HAIRIE, F ; LEBOUVIER, B ; NOUET, G ; PAUMIER, E ; RALANTOSON, N</creator><creatorcontrib>SUTTON, A. P ; HAIRIE, A ; HAIRIE, F ; LEBOUVIER, B ; NOUET, G ; PAUMIER, E ; RALANTOSON, N</creatorcontrib><description>Standard simulation techniques can be found in the literature to evaluate free energies of materials by thermodynamic integration. These technqieus, though straightforward, are demanding computationally as one has to evaluate an equilibrium internal energy at a succession of temperatures. However, if one is concerned with the free energy of a solid, or the excess free energy of a defect within the solid, at temperatures where atoms remain confined to potential wells, then a variety of simpler and much faster direct methods of minimizing free energies can be adopted. The direct methods are based on the quasi-harmonic approximation (QA) to the free energy. Here one recognizes that atoms vibrate about particular mean positions. Rather than working with fixed average atomic positions, which do not vary with temperature, one regards these mean positions as variational parameters with which the free energy of the system can be minimized. In this way, the QA captures some of the anharmonicity in the exact free energy that is altogether absent in the harmonic approximation. It has been shown that the QA is a remarkably successful technique for evaluating structures and excess free energies of defects in crystalline solids at elevated temperatures.</description><identifier>ISSN: 1054-9714</identifier><identifier>EISSN: 1544-1032</identifier><identifier>DOI: 10.1007/BF02665808</identifier><language>eng</language><publisher>Materials Park, OH: American Society for Metals</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Heat capacities of solids ; Metals. Metallurgy ; Physics ; Thermal properties of condensed matter ; Thermal properties of crystalline solids ; Thermodynamic properties</subject><ispartof>Journal of phase equilibria, 1997-12, Vol.18 (6), p.544-545</ispartof><rights>1998 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c248t-11fca5a55f4c93d2ddc273349c3073b348d80596b4a4f3304f3a60deb64976173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23911,23912,25120,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2078302$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SUTTON, A. P</creatorcontrib><creatorcontrib>HAIRIE, A</creatorcontrib><creatorcontrib>HAIRIE, F</creatorcontrib><creatorcontrib>LEBOUVIER, B</creatorcontrib><creatorcontrib>NOUET, G</creatorcontrib><creatorcontrib>PAUMIER, E</creatorcontrib><creatorcontrib>RALANTOSON, N</creatorcontrib><title>Methods of minimizing free energies directly</title><title>Journal of phase equilibria</title><description>Standard simulation techniques can be found in the literature to evaluate free energies of materials by thermodynamic integration. These technqieus, though straightforward, are demanding computationally as one has to evaluate an equilibrium internal energy at a succession of temperatures. However, if one is concerned with the free energy of a solid, or the excess free energy of a defect within the solid, at temperatures where atoms remain confined to potential wells, then a variety of simpler and much faster direct methods of minimizing free energies can be adopted. The direct methods are based on the quasi-harmonic approximation (QA) to the free energy. Here one recognizes that atoms vibrate about particular mean positions. Rather than working with fixed average atomic positions, which do not vary with temperature, one regards these mean positions as variational parameters with which the free energy of the system can be minimized. In this way, the QA captures some of the anharmonicity in the exact free energy that is altogether absent in the harmonic approximation. It has been shown that the QA is a remarkably successful technique for evaluating structures and excess free energies of defects in crystalline solids at elevated temperatures.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Heat capacities of solids</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of crystalline solids</subject><subject>Thermodynamic properties</subject><issn>1054-9714</issn><issn>1544-1032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpFkLtOAzEURC0EEiHQ8AVbIArEwvXbW0JEACmIBuqVY18Ho30Ee1MkX0-iRNDMTHFmiiHkksIdBdD3j1NgSkkD5oiMqBSipMDZ8TaDFGWlqTglZzl_A4BUFEbk9g2Hr97nog9FG7vYxk3sFkVIiAV2mBYRc-FjQjc063NyEmyT8eLgY_I5ffqYvJSz9-fXycOsdEyYoaQ0OCutlEG4invmvWOac1E5DprPuTDegKzUXFgROIetWAUe50pUWlHNx-R6v7tM_c8K81C3MTtsGtthv8o104zpyuzAmz3oUp9zwlAvU2xtWtcU6t0h9f8hW_jqsGqzs01ItnMx_zUYaMOB8V9H2V1j</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>SUTTON, A. P</creator><creator>HAIRIE, A</creator><creator>HAIRIE, F</creator><creator>LEBOUVIER, B</creator><creator>NOUET, G</creator><creator>PAUMIER, E</creator><creator>RALANTOSON, N</creator><general>American Society for Metals</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19971201</creationdate><title>Methods of minimizing free energies directly</title><author>SUTTON, A. P ; HAIRIE, A ; HAIRIE, F ; LEBOUVIER, B ; NOUET, G ; PAUMIER, E ; RALANTOSON, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c248t-11fca5a55f4c93d2ddc273349c3073b348d80596b4a4f3304f3a60deb64976173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Heat capacities of solids</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of crystalline solids</topic><topic>Thermodynamic properties</topic><toplevel>online_resources</toplevel><creatorcontrib>SUTTON, A. P</creatorcontrib><creatorcontrib>HAIRIE, A</creatorcontrib><creatorcontrib>HAIRIE, F</creatorcontrib><creatorcontrib>LEBOUVIER, B</creatorcontrib><creatorcontrib>NOUET, G</creatorcontrib><creatorcontrib>PAUMIER, E</creatorcontrib><creatorcontrib>RALANTOSON, N</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of phase equilibria</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SUTTON, A. P</au><au>HAIRIE, A</au><au>HAIRIE, F</au><au>LEBOUVIER, B</au><au>NOUET, G</au><au>PAUMIER, E</au><au>RALANTOSON, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methods of minimizing free energies directly</atitle><jtitle>Journal of phase equilibria</jtitle><date>1997-12-01</date><risdate>1997</risdate><volume>18</volume><issue>6</issue><spage>544</spage><epage>545</epage><pages>544-545</pages><issn>1054-9714</issn><eissn>1544-1032</eissn><abstract>Standard simulation techniques can be found in the literature to evaluate free energies of materials by thermodynamic integration. These technqieus, though straightforward, are demanding computationally as one has to evaluate an equilibrium internal energy at a succession of temperatures. However, if one is concerned with the free energy of a solid, or the excess free energy of a defect within the solid, at temperatures where atoms remain confined to potential wells, then a variety of simpler and much faster direct methods of minimizing free energies can be adopted. The direct methods are based on the quasi-harmonic approximation (QA) to the free energy. Here one recognizes that atoms vibrate about particular mean positions. Rather than working with fixed average atomic positions, which do not vary with temperature, one regards these mean positions as variational parameters with which the free energy of the system can be minimized. In this way, the QA captures some of the anharmonicity in the exact free energy that is altogether absent in the harmonic approximation. It has been shown that the QA is a remarkably successful technique for evaluating structures and excess free energies of defects in crystalline solids at elevated temperatures.</abstract><cop>Materials Park, OH</cop><pub>American Society for Metals</pub><doi>10.1007/BF02665808</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-9714 |
ispartof | Journal of phase equilibria, 1997-12, Vol.18 (6), p.544-545 |
issn | 1054-9714 1544-1032 |
language | eng |
recordid | cdi_proquest_miscellaneous_27227987 |
source | Springer Link |
subjects | Applied sciences Condensed matter: structure, mechanical and thermal properties Exact sciences and technology Heat capacities of solids Metals. Metallurgy Physics Thermal properties of condensed matter Thermal properties of crystalline solids Thermodynamic properties |
title | Methods of minimizing free energies directly |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methods%20of%20minimizing%20free%20energies%20directly&rft.jtitle=Journal%20of%20phase%20equilibria&rft.au=SUTTON,%20A.%20P&rft.date=1997-12-01&rft.volume=18&rft.issue=6&rft.spage=544&rft.epage=545&rft.pages=544-545&rft.issn=1054-9714&rft.eissn=1544-1032&rft_id=info:doi/10.1007/BF02665808&rft_dat=%3Cproquest_cross%3E27227987%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c248t-11fca5a55f4c93d2ddc273349c3073b348d80596b4a4f3304f3a60deb64976173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27227987&rft_id=info:pmid/&rfr_iscdi=true |