Loading…
An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN
Electroencephalography (EEG) is crucial for epilepsy detection; however, detecting abnormalities takes experience and knowledge. The electroencephalogram (EEG) is a technology that measures brain motion and represents the brain’s function. EEG is an effective instrument for deciphering the brain’s c...
Saved in:
Published in: | Contrast media and molecular imaging 2022, Vol.2022 (1), p.1502934-1502934 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-8c6b0821b9297e8cace3c73d64ffe1f8abf3c806f25b0e85ac848d13e0b9f5ce3 |
container_end_page | 1502934 |
container_issue | 1 |
container_start_page | 1502934 |
container_title | Contrast media and molecular imaging |
container_volume | 2022 |
creator | Syamsundararao, Thalakola Selvarani, A. Rathi, R. Vini Antony Grace, N. Selvaraj, D. Almutairi, Khalid M. A. Alonazi, Wadi B. Priyan, K. S. A. Mosissa, Ramata |
description | Electroencephalography (EEG) is crucial for epilepsy detection; however, detecting abnormalities takes experience and knowledge. The electroencephalogram (EEG) is a technology that measures brain motion and represents the brain’s function. EEG is an effective instrument for deciphering the brain’s complicated activity. The information contained in the EEG signal pertains to the electric functioning of the brain. Neurologists have typically used direct visual inspection to detect epileptogenic abnormalities. This method is time-consuming, restricted by technical artifacts, produces varying findings depending on the reader’s level of experience, and is ineffective at detecting irregularities. As a result, developing automated algorithms for detecting anomalies in EEGs associated with epilepsy is critical. The construction of a novel class of convolutional neural networks (CNNs) for detecting aberrant waveforms and sensors in epilepsy EEGs is described in this research. In this study, EEG signals are analyzed using a convolutional neural network (CNN). For the automatic detection of abnormal and normal EEG indications, a novel deep one-dimensional convolutional neural network (1D CNN) model is suggested in this paper. The regular, pre-ictal, and seizure categories are detected using this approach. The proposed model achieves an accuracy of 85.48% and a reduced categorization error rate of 14.5%. |
doi_str_mv | 10.1155/2022/1502934 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2723483029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723483029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-8c6b0821b9297e8cace3c73d64ffe1f8abf3c806f25b0e85ac848d13e0b9f5ce3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRbK3uXEuWgsbOI5NMliXWKpQqaHdCmEzutCN51Jkp4r83fS5d3cvhO2fxIXRN8AMhnA8ppnRIOKYpi05Qv4t4GDGSnB5_nPbQhXNfGEcRS9k56rGYEsZj0kefoyYYa22UgcYH72bRyCp4s60C50yzCEbVorXGL-tAtzZ4BA_Kb_OiaW0tK-MNuMB0I-PJoT7fNrPZ7BKdaVk5uNrfAZo_jT-y53D6OnnJRtNQMUp9KFRcYEFJkdI0AaGkAqYSVsaR1kC0kIVmSuBYU15gEFwqEYmSMMBFqnkHD9Dtbndl2-81OJ_XximoKtlAu3Y5TSiLBNsoGqD7Haps65wFna-sqaX9zQnONz7zjc9877PDb_bL66KG8ggfBHbA3Q5YmqaUP-b_uT-dz3xm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723483029</pqid></control><display><type>article</type><title>An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN</title><source>PubMed Central</source><creator>Syamsundararao, Thalakola ; Selvarani, A. ; Rathi, R. ; Vini Antony Grace, N. ; Selvaraj, D. ; Almutairi, Khalid M. A. ; Alonazi, Wadi B. ; Priyan, K. S. A. ; Mosissa, Ramata</creator><contributor>Tiwari, Shailendra</contributor><creatorcontrib>Syamsundararao, Thalakola ; Selvarani, A. ; Rathi, R. ; Vini Antony Grace, N. ; Selvaraj, D. ; Almutairi, Khalid M. A. ; Alonazi, Wadi B. ; Priyan, K. S. A. ; Mosissa, Ramata ; Tiwari, Shailendra</creatorcontrib><description>Electroencephalography (EEG) is crucial for epilepsy detection; however, detecting abnormalities takes experience and knowledge. The electroencephalogram (EEG) is a technology that measures brain motion and represents the brain’s function. EEG is an effective instrument for deciphering the brain’s complicated activity. The information contained in the EEG signal pertains to the electric functioning of the brain. Neurologists have typically used direct visual inspection to detect epileptogenic abnormalities. This method is time-consuming, restricted by technical artifacts, produces varying findings depending on the reader’s level of experience, and is ineffective at detecting irregularities. As a result, developing automated algorithms for detecting anomalies in EEGs associated with epilepsy is critical. The construction of a novel class of convolutional neural networks (CNNs) for detecting aberrant waveforms and sensors in epilepsy EEGs is described in this research. In this study, EEG signals are analyzed using a convolutional neural network (CNN). For the automatic detection of abnormal and normal EEG indications, a novel deep one-dimensional convolutional neural network (1D CNN) model is suggested in this paper. The regular, pre-ictal, and seizure categories are detected using this approach. The proposed model achieves an accuracy of 85.48% and a reduced categorization error rate of 14.5%.</description><identifier>ISSN: 1555-4309</identifier><identifier>EISSN: 1555-4317</identifier><identifier>DOI: 10.1155/2022/1502934</identifier><identifier>PMID: 36213561</identifier><language>eng</language><publisher>England: Hindawi</publisher><subject>Algorithms ; Electroencephalography - methods ; Epilepsy - diagnosis ; Humans ; Seizures - diagnosis ; Signal Processing, Computer-Assisted</subject><ispartof>Contrast media and molecular imaging, 2022, Vol.2022 (1), p.1502934-1502934</ispartof><rights>Copyright © 2022 Thalakola Syamsundararao et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-8c6b0821b9297e8cace3c73d64ffe1f8abf3c806f25b0e85ac848d13e0b9f5ce3</cites><orcidid>0000-0001-5938-7279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36213561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tiwari, Shailendra</contributor><creatorcontrib>Syamsundararao, Thalakola</creatorcontrib><creatorcontrib>Selvarani, A.</creatorcontrib><creatorcontrib>Rathi, R.</creatorcontrib><creatorcontrib>Vini Antony Grace, N.</creatorcontrib><creatorcontrib>Selvaraj, D.</creatorcontrib><creatorcontrib>Almutairi, Khalid M. A.</creatorcontrib><creatorcontrib>Alonazi, Wadi B.</creatorcontrib><creatorcontrib>Priyan, K. S. A.</creatorcontrib><creatorcontrib>Mosissa, Ramata</creatorcontrib><title>An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN</title><title>Contrast media and molecular imaging</title><addtitle>Contrast Media Mol Imaging</addtitle><description>Electroencephalography (EEG) is crucial for epilepsy detection; however, detecting abnormalities takes experience and knowledge. The electroencephalogram (EEG) is a technology that measures brain motion and represents the brain’s function. EEG is an effective instrument for deciphering the brain’s complicated activity. The information contained in the EEG signal pertains to the electric functioning of the brain. Neurologists have typically used direct visual inspection to detect epileptogenic abnormalities. This method is time-consuming, restricted by technical artifacts, produces varying findings depending on the reader’s level of experience, and is ineffective at detecting irregularities. As a result, developing automated algorithms for detecting anomalies in EEGs associated with epilepsy is critical. The construction of a novel class of convolutional neural networks (CNNs) for detecting aberrant waveforms and sensors in epilepsy EEGs is described in this research. In this study, EEG signals are analyzed using a convolutional neural network (CNN). For the automatic detection of abnormal and normal EEG indications, a novel deep one-dimensional convolutional neural network (1D CNN) model is suggested in this paper. The regular, pre-ictal, and seizure categories are detected using this approach. The proposed model achieves an accuracy of 85.48% and a reduced categorization error rate of 14.5%.</description><subject>Algorithms</subject><subject>Electroencephalography - methods</subject><subject>Epilepsy - diagnosis</subject><subject>Humans</subject><subject>Seizures - diagnosis</subject><subject>Signal Processing, Computer-Assisted</subject><issn>1555-4309</issn><issn>1555-4317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRbK3uXEuWgsbOI5NMliXWKpQqaHdCmEzutCN51Jkp4r83fS5d3cvhO2fxIXRN8AMhnA8ppnRIOKYpi05Qv4t4GDGSnB5_nPbQhXNfGEcRS9k56rGYEsZj0kefoyYYa22UgcYH72bRyCp4s60C50yzCEbVorXGL-tAtzZ4BA_Kb_OiaW0tK-MNuMB0I-PJoT7fNrPZ7BKdaVk5uNrfAZo_jT-y53D6OnnJRtNQMUp9KFRcYEFJkdI0AaGkAqYSVsaR1kC0kIVmSuBYU15gEFwqEYmSMMBFqnkHD9Dtbndl2-81OJ_XximoKtlAu3Y5TSiLBNsoGqD7Haps65wFna-sqaX9zQnONz7zjc9877PDb_bL66KG8ggfBHbA3Q5YmqaUP-b_uT-dz3xm</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Syamsundararao, Thalakola</creator><creator>Selvarani, A.</creator><creator>Rathi, R.</creator><creator>Vini Antony Grace, N.</creator><creator>Selvaraj, D.</creator><creator>Almutairi, Khalid M. A.</creator><creator>Alonazi, Wadi B.</creator><creator>Priyan, K. S. A.</creator><creator>Mosissa, Ramata</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5938-7279</orcidid></search><sort><creationdate>2022</creationdate><title>An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN</title><author>Syamsundararao, Thalakola ; Selvarani, A. ; Rathi, R. ; Vini Antony Grace, N. ; Selvaraj, D. ; Almutairi, Khalid M. A. ; Alonazi, Wadi B. ; Priyan, K. S. A. ; Mosissa, Ramata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-8c6b0821b9297e8cace3c73d64ffe1f8abf3c806f25b0e85ac848d13e0b9f5ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Electroencephalography - methods</topic><topic>Epilepsy - diagnosis</topic><topic>Humans</topic><topic>Seizures - diagnosis</topic><topic>Signal Processing, Computer-Assisted</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Syamsundararao, Thalakola</creatorcontrib><creatorcontrib>Selvarani, A.</creatorcontrib><creatorcontrib>Rathi, R.</creatorcontrib><creatorcontrib>Vini Antony Grace, N.</creatorcontrib><creatorcontrib>Selvaraj, D.</creatorcontrib><creatorcontrib>Almutairi, Khalid M. A.</creatorcontrib><creatorcontrib>Alonazi, Wadi B.</creatorcontrib><creatorcontrib>Priyan, K. S. A.</creatorcontrib><creatorcontrib>Mosissa, Ramata</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Contrast media and molecular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Syamsundararao, Thalakola</au><au>Selvarani, A.</au><au>Rathi, R.</au><au>Vini Antony Grace, N.</au><au>Selvaraj, D.</au><au>Almutairi, Khalid M. A.</au><au>Alonazi, Wadi B.</au><au>Priyan, K. S. A.</au><au>Mosissa, Ramata</au><au>Tiwari, Shailendra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN</atitle><jtitle>Contrast media and molecular imaging</jtitle><addtitle>Contrast Media Mol Imaging</addtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><issue>1</issue><spage>1502934</spage><epage>1502934</epage><pages>1502934-1502934</pages><issn>1555-4309</issn><eissn>1555-4317</eissn><abstract>Electroencephalography (EEG) is crucial for epilepsy detection; however, detecting abnormalities takes experience and knowledge. The electroencephalogram (EEG) is a technology that measures brain motion and represents the brain’s function. EEG is an effective instrument for deciphering the brain’s complicated activity. The information contained in the EEG signal pertains to the electric functioning of the brain. Neurologists have typically used direct visual inspection to detect epileptogenic abnormalities. This method is time-consuming, restricted by technical artifacts, produces varying findings depending on the reader’s level of experience, and is ineffective at detecting irregularities. As a result, developing automated algorithms for detecting anomalies in EEGs associated with epilepsy is critical. The construction of a novel class of convolutional neural networks (CNNs) for detecting aberrant waveforms and sensors in epilepsy EEGs is described in this research. In this study, EEG signals are analyzed using a convolutional neural network (CNN). For the automatic detection of abnormal and normal EEG indications, a novel deep one-dimensional convolutional neural network (1D CNN) model is suggested in this paper. The regular, pre-ictal, and seizure categories are detected using this approach. The proposed model achieves an accuracy of 85.48% and a reduced categorization error rate of 14.5%.</abstract><cop>England</cop><pub>Hindawi</pub><pmid>36213561</pmid><doi>10.1155/2022/1502934</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5938-7279</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1555-4309 |
ispartof | Contrast media and molecular imaging, 2022, Vol.2022 (1), p.1502934-1502934 |
issn | 1555-4309 1555-4317 |
language | eng |
recordid | cdi_proquest_miscellaneous_2723483029 |
source | PubMed Central |
subjects | Algorithms Electroencephalography - methods Epilepsy - diagnosis Humans Seizures - diagnosis Signal Processing, Computer-Assisted |
title | An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Signal%20Processing%20Algorithm%20for%20Detecting%20Abnormalities%20in%20EEG%20Signal%20Using%20CNN&rft.jtitle=Contrast%20media%20and%20molecular%20imaging&rft.au=Syamsundararao,%20Thalakola&rft.date=2022&rft.volume=2022&rft.issue=1&rft.spage=1502934&rft.epage=1502934&rft.pages=1502934-1502934&rft.issn=1555-4309&rft.eissn=1555-4317&rft_id=info:doi/10.1155/2022/1502934&rft_dat=%3Cproquest_cross%3E2723483029%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-8c6b0821b9297e8cace3c73d64ffe1f8abf3c806f25b0e85ac848d13e0b9f5ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2723483029&rft_id=info:pmid/36213561&rfr_iscdi=true |