Loading…

An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN

Electroencephalography (EEG) is crucial for epilepsy detection; however, detecting abnormalities takes experience and knowledge. The electroencephalogram (EEG) is a technology that measures brain motion and represents the brain’s function. EEG is an effective instrument for deciphering the brain’s c...

Full description

Saved in:
Bibliographic Details
Published in:Contrast media and molecular imaging 2022, Vol.2022 (1), p.1502934-1502934
Main Authors: Syamsundararao, Thalakola, Selvarani, A., Rathi, R., Vini Antony Grace, N., Selvaraj, D., Almutairi, Khalid M. A., Alonazi, Wadi B., Priyan, K. S. A., Mosissa, Ramata
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c322t-8c6b0821b9297e8cace3c73d64ffe1f8abf3c806f25b0e85ac848d13e0b9f5ce3
container_end_page 1502934
container_issue 1
container_start_page 1502934
container_title Contrast media and molecular imaging
container_volume 2022
creator Syamsundararao, Thalakola
Selvarani, A.
Rathi, R.
Vini Antony Grace, N.
Selvaraj, D.
Almutairi, Khalid M. A.
Alonazi, Wadi B.
Priyan, K. S. A.
Mosissa, Ramata
description Electroencephalography (EEG) is crucial for epilepsy detection; however, detecting abnormalities takes experience and knowledge. The electroencephalogram (EEG) is a technology that measures brain motion and represents the brain’s function. EEG is an effective instrument for deciphering the brain’s complicated activity. The information contained in the EEG signal pertains to the electric functioning of the brain. Neurologists have typically used direct visual inspection to detect epileptogenic abnormalities. This method is time-consuming, restricted by technical artifacts, produces varying findings depending on the reader’s level of experience, and is ineffective at detecting irregularities. As a result, developing automated algorithms for detecting anomalies in EEGs associated with epilepsy is critical. The construction of a novel class of convolutional neural networks (CNNs) for detecting aberrant waveforms and sensors in epilepsy EEGs is described in this research. In this study, EEG signals are analyzed using a convolutional neural network (CNN). For the automatic detection of abnormal and normal EEG indications, a novel deep one-dimensional convolutional neural network (1D CNN) model is suggested in this paper. The regular, pre-ictal, and seizure categories are detected using this approach. The proposed model achieves an accuracy of 85.48% and a reduced categorization error rate of 14.5%.
doi_str_mv 10.1155/2022/1502934
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2723483029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723483029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-8c6b0821b9297e8cace3c73d64ffe1f8abf3c806f25b0e85ac848d13e0b9f5ce3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRbK3uXEuWgsbOI5NMliXWKpQqaHdCmEzutCN51Jkp4r83fS5d3cvhO2fxIXRN8AMhnA8ppnRIOKYpi05Qv4t4GDGSnB5_nPbQhXNfGEcRS9k56rGYEsZj0kefoyYYa22UgcYH72bRyCp4s60C50yzCEbVorXGL-tAtzZ4BA_Kb_OiaW0tK-MNuMB0I-PJoT7fNrPZ7BKdaVk5uNrfAZo_jT-y53D6OnnJRtNQMUp9KFRcYEFJkdI0AaGkAqYSVsaR1kC0kIVmSuBYU15gEFwqEYmSMMBFqnkHD9Dtbndl2-81OJ_XximoKtlAu3Y5TSiLBNsoGqD7Haps65wFna-sqaX9zQnONz7zjc9877PDb_bL66KG8ggfBHbA3Q5YmqaUP-b_uT-dz3xm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723483029</pqid></control><display><type>article</type><title>An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN</title><source>PubMed Central</source><creator>Syamsundararao, Thalakola ; Selvarani, A. ; Rathi, R. ; Vini Antony Grace, N. ; Selvaraj, D. ; Almutairi, Khalid M. A. ; Alonazi, Wadi B. ; Priyan, K. S. A. ; Mosissa, Ramata</creator><contributor>Tiwari, Shailendra</contributor><creatorcontrib>Syamsundararao, Thalakola ; Selvarani, A. ; Rathi, R. ; Vini Antony Grace, N. ; Selvaraj, D. ; Almutairi, Khalid M. A. ; Alonazi, Wadi B. ; Priyan, K. S. A. ; Mosissa, Ramata ; Tiwari, Shailendra</creatorcontrib><description>Electroencephalography (EEG) is crucial for epilepsy detection; however, detecting abnormalities takes experience and knowledge. The electroencephalogram (EEG) is a technology that measures brain motion and represents the brain’s function. EEG is an effective instrument for deciphering the brain’s complicated activity. The information contained in the EEG signal pertains to the electric functioning of the brain. Neurologists have typically used direct visual inspection to detect epileptogenic abnormalities. This method is time-consuming, restricted by technical artifacts, produces varying findings depending on the reader’s level of experience, and is ineffective at detecting irregularities. As a result, developing automated algorithms for detecting anomalies in EEGs associated with epilepsy is critical. The construction of a novel class of convolutional neural networks (CNNs) for detecting aberrant waveforms and sensors in epilepsy EEGs is described in this research. In this study, EEG signals are analyzed using a convolutional neural network (CNN). For the automatic detection of abnormal and normal EEG indications, a novel deep one-dimensional convolutional neural network (1D CNN) model is suggested in this paper. The regular, pre-ictal, and seizure categories are detected using this approach. The proposed model achieves an accuracy of 85.48% and a reduced categorization error rate of 14.5%.</description><identifier>ISSN: 1555-4309</identifier><identifier>EISSN: 1555-4317</identifier><identifier>DOI: 10.1155/2022/1502934</identifier><identifier>PMID: 36213561</identifier><language>eng</language><publisher>England: Hindawi</publisher><subject>Algorithms ; Electroencephalography - methods ; Epilepsy - diagnosis ; Humans ; Seizures - diagnosis ; Signal Processing, Computer-Assisted</subject><ispartof>Contrast media and molecular imaging, 2022, Vol.2022 (1), p.1502934-1502934</ispartof><rights>Copyright © 2022 Thalakola Syamsundararao et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-8c6b0821b9297e8cace3c73d64ffe1f8abf3c806f25b0e85ac848d13e0b9f5ce3</cites><orcidid>0000-0001-5938-7279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36213561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tiwari, Shailendra</contributor><creatorcontrib>Syamsundararao, Thalakola</creatorcontrib><creatorcontrib>Selvarani, A.</creatorcontrib><creatorcontrib>Rathi, R.</creatorcontrib><creatorcontrib>Vini Antony Grace, N.</creatorcontrib><creatorcontrib>Selvaraj, D.</creatorcontrib><creatorcontrib>Almutairi, Khalid M. A.</creatorcontrib><creatorcontrib>Alonazi, Wadi B.</creatorcontrib><creatorcontrib>Priyan, K. S. A.</creatorcontrib><creatorcontrib>Mosissa, Ramata</creatorcontrib><title>An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN</title><title>Contrast media and molecular imaging</title><addtitle>Contrast Media Mol Imaging</addtitle><description>Electroencephalography (EEG) is crucial for epilepsy detection; however, detecting abnormalities takes experience and knowledge. The electroencephalogram (EEG) is a technology that measures brain motion and represents the brain’s function. EEG is an effective instrument for deciphering the brain’s complicated activity. The information contained in the EEG signal pertains to the electric functioning of the brain. Neurologists have typically used direct visual inspection to detect epileptogenic abnormalities. This method is time-consuming, restricted by technical artifacts, produces varying findings depending on the reader’s level of experience, and is ineffective at detecting irregularities. As a result, developing automated algorithms for detecting anomalies in EEGs associated with epilepsy is critical. The construction of a novel class of convolutional neural networks (CNNs) for detecting aberrant waveforms and sensors in epilepsy EEGs is described in this research. In this study, EEG signals are analyzed using a convolutional neural network (CNN). For the automatic detection of abnormal and normal EEG indications, a novel deep one-dimensional convolutional neural network (1D CNN) model is suggested in this paper. The regular, pre-ictal, and seizure categories are detected using this approach. The proposed model achieves an accuracy of 85.48% and a reduced categorization error rate of 14.5%.</description><subject>Algorithms</subject><subject>Electroencephalography - methods</subject><subject>Epilepsy - diagnosis</subject><subject>Humans</subject><subject>Seizures - diagnosis</subject><subject>Signal Processing, Computer-Assisted</subject><issn>1555-4309</issn><issn>1555-4317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRbK3uXEuWgsbOI5NMliXWKpQqaHdCmEzutCN51Jkp4r83fS5d3cvhO2fxIXRN8AMhnA8ppnRIOKYpi05Qv4t4GDGSnB5_nPbQhXNfGEcRS9k56rGYEsZj0kefoyYYa22UgcYH72bRyCp4s60C50yzCEbVorXGL-tAtzZ4BA_Kb_OiaW0tK-MNuMB0I-PJoT7fNrPZ7BKdaVk5uNrfAZo_jT-y53D6OnnJRtNQMUp9KFRcYEFJkdI0AaGkAqYSVsaR1kC0kIVmSuBYU15gEFwqEYmSMMBFqnkHD9Dtbndl2-81OJ_XximoKtlAu3Y5TSiLBNsoGqD7Haps65wFna-sqaX9zQnONz7zjc9877PDb_bL66KG8ggfBHbA3Q5YmqaUP-b_uT-dz3xm</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Syamsundararao, Thalakola</creator><creator>Selvarani, A.</creator><creator>Rathi, R.</creator><creator>Vini Antony Grace, N.</creator><creator>Selvaraj, D.</creator><creator>Almutairi, Khalid M. A.</creator><creator>Alonazi, Wadi B.</creator><creator>Priyan, K. S. A.</creator><creator>Mosissa, Ramata</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5938-7279</orcidid></search><sort><creationdate>2022</creationdate><title>An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN</title><author>Syamsundararao, Thalakola ; Selvarani, A. ; Rathi, R. ; Vini Antony Grace, N. ; Selvaraj, D. ; Almutairi, Khalid M. A. ; Alonazi, Wadi B. ; Priyan, K. S. A. ; Mosissa, Ramata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-8c6b0821b9297e8cace3c73d64ffe1f8abf3c806f25b0e85ac848d13e0b9f5ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Electroencephalography - methods</topic><topic>Epilepsy - diagnosis</topic><topic>Humans</topic><topic>Seizures - diagnosis</topic><topic>Signal Processing, Computer-Assisted</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Syamsundararao, Thalakola</creatorcontrib><creatorcontrib>Selvarani, A.</creatorcontrib><creatorcontrib>Rathi, R.</creatorcontrib><creatorcontrib>Vini Antony Grace, N.</creatorcontrib><creatorcontrib>Selvaraj, D.</creatorcontrib><creatorcontrib>Almutairi, Khalid M. A.</creatorcontrib><creatorcontrib>Alonazi, Wadi B.</creatorcontrib><creatorcontrib>Priyan, K. S. A.</creatorcontrib><creatorcontrib>Mosissa, Ramata</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Contrast media and molecular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Syamsundararao, Thalakola</au><au>Selvarani, A.</au><au>Rathi, R.</au><au>Vini Antony Grace, N.</au><au>Selvaraj, D.</au><au>Almutairi, Khalid M. A.</au><au>Alonazi, Wadi B.</au><au>Priyan, K. S. A.</au><au>Mosissa, Ramata</au><au>Tiwari, Shailendra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN</atitle><jtitle>Contrast media and molecular imaging</jtitle><addtitle>Contrast Media Mol Imaging</addtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><issue>1</issue><spage>1502934</spage><epage>1502934</epage><pages>1502934-1502934</pages><issn>1555-4309</issn><eissn>1555-4317</eissn><abstract>Electroencephalography (EEG) is crucial for epilepsy detection; however, detecting abnormalities takes experience and knowledge. The electroencephalogram (EEG) is a technology that measures brain motion and represents the brain’s function. EEG is an effective instrument for deciphering the brain’s complicated activity. The information contained in the EEG signal pertains to the electric functioning of the brain. Neurologists have typically used direct visual inspection to detect epileptogenic abnormalities. This method is time-consuming, restricted by technical artifacts, produces varying findings depending on the reader’s level of experience, and is ineffective at detecting irregularities. As a result, developing automated algorithms for detecting anomalies in EEGs associated with epilepsy is critical. The construction of a novel class of convolutional neural networks (CNNs) for detecting aberrant waveforms and sensors in epilepsy EEGs is described in this research. In this study, EEG signals are analyzed using a convolutional neural network (CNN). For the automatic detection of abnormal and normal EEG indications, a novel deep one-dimensional convolutional neural network (1D CNN) model is suggested in this paper. The regular, pre-ictal, and seizure categories are detected using this approach. The proposed model achieves an accuracy of 85.48% and a reduced categorization error rate of 14.5%.</abstract><cop>England</cop><pub>Hindawi</pub><pmid>36213561</pmid><doi>10.1155/2022/1502934</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5938-7279</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1555-4309
ispartof Contrast media and molecular imaging, 2022, Vol.2022 (1), p.1502934-1502934
issn 1555-4309
1555-4317
language eng
recordid cdi_proquest_miscellaneous_2723483029
source PubMed Central
subjects Algorithms
Electroencephalography - methods
Epilepsy - diagnosis
Humans
Seizures - diagnosis
Signal Processing, Computer-Assisted
title An Efficient Signal Processing Algorithm for Detecting Abnormalities in EEG Signal Using CNN
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Signal%20Processing%20Algorithm%20for%20Detecting%20Abnormalities%20in%20EEG%20Signal%20Using%20CNN&rft.jtitle=Contrast%20media%20and%20molecular%20imaging&rft.au=Syamsundararao,%20Thalakola&rft.date=2022&rft.volume=2022&rft.issue=1&rft.spage=1502934&rft.epage=1502934&rft.pages=1502934-1502934&rft.issn=1555-4309&rft.eissn=1555-4317&rft_id=info:doi/10.1155/2022/1502934&rft_dat=%3Cproquest_cross%3E2723483029%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-8c6b0821b9297e8cace3c73d64ffe1f8abf3c806f25b0e85ac848d13e0b9f5ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2723483029&rft_id=info:pmid/36213561&rfr_iscdi=true