Loading…

Two-dimensional Problems for Thermoelasticity, with Two Relaxation Times in Spherical Regions under Axisymmetric Distributions

Two-dimensional (2D) axisymmetric problems are considered within the context of the theory of thermoelasticity, with two relaxation times. The general solution is obtained in the Laplace transform domain by using a direct approach without the use of potential functions. The resulting formulation is...

Full description

Saved in:
Bibliographic Details
Published in:International journal of engineering science 1999-02, Vol.37 (3), p.299-314
Main Authors: Sherief, Hany H., Megahed, Fouad A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-e0331528eff95b0aff7e15a64a76e790ea6a11c0b40813cda67c4ac7b9f3af553
cites cdi_FETCH-LOGICAL-c367t-e0331528eff95b0aff7e15a64a76e790ea6a11c0b40813cda67c4ac7b9f3af553
container_end_page 314
container_issue 3
container_start_page 299
container_title International journal of engineering science
container_volume 37
creator Sherief, Hany H.
Megahed, Fouad A.
description Two-dimensional (2D) axisymmetric problems are considered within the context of the theory of thermoelasticity, with two relaxation times. The general solution is obtained in the Laplace transform domain by using a direct approach without the use of potential functions. The resulting formulation is utilized to solve a problem for a thick spherical shell. The surface of the shell is taken as traction free and subjected to given axisymmetric temperature distributions. The inversion of the Laplace transforms are carried out using the inversion formula of the transform together with Fourier expansion techniques. Numerical solutions are obtained for the temperature, displacement and stress distributions in the physical domain. Numerical results are represented graphically.
doi_str_mv 10.1016/S0020-7225(98)00070-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27234842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020722598000706</els_id><sourcerecordid>27234842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-e0331528eff95b0aff7e15a64a76e790ea6a11c0b40813cda67c4ac7b9f3af553</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhq2KSl1of0IlH1AFUkPtJLbjE1pB-ZCQqGB7thxnXIySeOvJAnvpb6-XRXDkNNLM88xoXkK-cnbEGZc_bhkrWaHKUhzo5pAxplghP5AZb5QuSq7VDpm9Ip_ILuJ9hkSl9Yz8WzzGogsDjBjiaHv6K8W2hwGpj4ku7iANEXqLU3BhWn-nj2G6o9mhN7n7ZKcs0UXWkYaR3i4zH1zecgN_8gTpauwg0flTwPUwwJSH9DRgru1qo-Jn8tHbHuHLS90jv89-Lk4uiqvr88uT-VXhKqmmAlhVcVE24L0WLbPeK-DCytoqCUozsNJy7lhbs4ZXrrNSudo61WpfWS9EtUe-bfcuU_y7ApzMENBB39sR4gpNqcqqbuoyg2ILuhQRE3izTGGwaW04M5u0zXPaZhOl0Y15TtvI7O2_HLCYA_DJji7gmyxFLUSdseMtBvnZhwDJoAswOuhCAjeZLoZ3Dv0HRgeW4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27234842</pqid></control><display><type>article</type><title>Two-dimensional Problems for Thermoelasticity, with Two Relaxation Times in Spherical Regions under Axisymmetric Distributions</title><source>ScienceDirect Journals</source><creator>Sherief, Hany H. ; Megahed, Fouad A.</creator><creatorcontrib>Sherief, Hany H. ; Megahed, Fouad A.</creatorcontrib><description>Two-dimensional (2D) axisymmetric problems are considered within the context of the theory of thermoelasticity, with two relaxation times. The general solution is obtained in the Laplace transform domain by using a direct approach without the use of potential functions. The resulting formulation is utilized to solve a problem for a thick spherical shell. The surface of the shell is taken as traction free and subjected to given axisymmetric temperature distributions. The inversion of the Laplace transforms are carried out using the inversion formula of the transform together with Fourier expansion techniques. Numerical solutions are obtained for the temperature, displacement and stress distributions in the physical domain. Numerical results are represented graphically.</description><identifier>ISSN: 0020-7225</identifier><identifier>EISSN: 1879-2197</identifier><identifier>DOI: 10.1016/S0020-7225(98)00070-6</identifier><identifier>CODEN: IJESAN</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>International journal of engineering science, 1999-02, Vol.37 (3), p.299-314</ispartof><rights>1998 Elsevier Science Ltd</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-e0331528eff95b0aff7e15a64a76e790ea6a11c0b40813cda67c4ac7b9f3af553</citedby><cites>FETCH-LOGICAL-c367t-e0331528eff95b0aff7e15a64a76e790ea6a11c0b40813cda67c4ac7b9f3af553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1654554$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sherief, Hany H.</creatorcontrib><creatorcontrib>Megahed, Fouad A.</creatorcontrib><title>Two-dimensional Problems for Thermoelasticity, with Two Relaxation Times in Spherical Regions under Axisymmetric Distributions</title><title>International journal of engineering science</title><description>Two-dimensional (2D) axisymmetric problems are considered within the context of the theory of thermoelasticity, with two relaxation times. The general solution is obtained in the Laplace transform domain by using a direct approach without the use of potential functions. The resulting formulation is utilized to solve a problem for a thick spherical shell. The surface of the shell is taken as traction free and subjected to given axisymmetric temperature distributions. The inversion of the Laplace transforms are carried out using the inversion formula of the transform together with Fourier expansion techniques. Numerical solutions are obtained for the temperature, displacement and stress distributions in the physical domain. Numerical results are represented graphically.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0020-7225</issn><issn>1879-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQhq2KSl1of0IlH1AFUkPtJLbjE1pB-ZCQqGB7thxnXIySeOvJAnvpb6-XRXDkNNLM88xoXkK-cnbEGZc_bhkrWaHKUhzo5pAxplghP5AZb5QuSq7VDpm9Ip_ILuJ9hkSl9Yz8WzzGogsDjBjiaHv6K8W2hwGpj4ku7iANEXqLU3BhWn-nj2G6o9mhN7n7ZKcs0UXWkYaR3i4zH1zecgN_8gTpauwg0flTwPUwwJSH9DRgru1qo-Jn8tHbHuHLS90jv89-Lk4uiqvr88uT-VXhKqmmAlhVcVE24L0WLbPeK-DCytoqCUozsNJy7lhbs4ZXrrNSudo61WpfWS9EtUe-bfcuU_y7ApzMENBB39sR4gpNqcqqbuoyg2ILuhQRE3izTGGwaW04M5u0zXPaZhOl0Y15TtvI7O2_HLCYA_DJji7gmyxFLUSdseMtBvnZhwDJoAswOuhCAjeZLoZ3Dv0HRgeW4w</recordid><startdate>19990201</startdate><enddate>19990201</enddate><creator>Sherief, Hany H.</creator><creator>Megahed, Fouad A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>19990201</creationdate><title>Two-dimensional Problems for Thermoelasticity, with Two Relaxation Times in Spherical Regions under Axisymmetric Distributions</title><author>Sherief, Hany H. ; Megahed, Fouad A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-e0331528eff95b0aff7e15a64a76e790ea6a11c0b40813cda67c4ac7b9f3af553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sherief, Hany H.</creatorcontrib><creatorcontrib>Megahed, Fouad A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sherief, Hany H.</au><au>Megahed, Fouad A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-dimensional Problems for Thermoelasticity, with Two Relaxation Times in Spherical Regions under Axisymmetric Distributions</atitle><jtitle>International journal of engineering science</jtitle><date>1999-02-01</date><risdate>1999</risdate><volume>37</volume><issue>3</issue><spage>299</spage><epage>314</epage><pages>299-314</pages><issn>0020-7225</issn><eissn>1879-2197</eissn><coden>IJESAN</coden><abstract>Two-dimensional (2D) axisymmetric problems are considered within the context of the theory of thermoelasticity, with two relaxation times. The general solution is obtained in the Laplace transform domain by using a direct approach without the use of potential functions. The resulting formulation is utilized to solve a problem for a thick spherical shell. The surface of the shell is taken as traction free and subjected to given axisymmetric temperature distributions. The inversion of the Laplace transforms are carried out using the inversion formula of the transform together with Fourier expansion techniques. Numerical solutions are obtained for the temperature, displacement and stress distributions in the physical domain. Numerical results are represented graphically.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7225(98)00070-6</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7225
ispartof International journal of engineering science, 1999-02, Vol.37 (3), p.299-314
issn 0020-7225
1879-2197
language eng
recordid cdi_proquest_miscellaneous_27234842
source ScienceDirect Journals
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Static elasticity
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
title Two-dimensional Problems for Thermoelasticity, with Two Relaxation Times in Spherical Regions under Axisymmetric Distributions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-dimensional%20Problems%20for%20Thermoelasticity,%20with%20Two%20Relaxation%20Times%20in%20Spherical%20Regions%20under%20Axisymmetric%20Distributions&rft.jtitle=International%20journal%20of%20engineering%20science&rft.au=Sherief,%20Hany%20H.&rft.date=1999-02-01&rft.volume=37&rft.issue=3&rft.spage=299&rft.epage=314&rft.pages=299-314&rft.issn=0020-7225&rft.eissn=1879-2197&rft.coden=IJESAN&rft_id=info:doi/10.1016/S0020-7225(98)00070-6&rft_dat=%3Cproquest_cross%3E27234842%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-e0331528eff95b0aff7e15a64a76e790ea6a11c0b40813cda67c4ac7b9f3af553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27234842&rft_id=info:pmid/&rfr_iscdi=true