Loading…
Two-dimensional Problems for Thermoelasticity, with Two Relaxation Times in Spherical Regions under Axisymmetric Distributions
Two-dimensional (2D) axisymmetric problems are considered within the context of the theory of thermoelasticity, with two relaxation times. The general solution is obtained in the Laplace transform domain by using a direct approach without the use of potential functions. The resulting formulation is...
Saved in:
Published in: | International journal of engineering science 1999-02, Vol.37 (3), p.299-314 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-e0331528eff95b0aff7e15a64a76e790ea6a11c0b40813cda67c4ac7b9f3af553 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-e0331528eff95b0aff7e15a64a76e790ea6a11c0b40813cda67c4ac7b9f3af553 |
container_end_page | 314 |
container_issue | 3 |
container_start_page | 299 |
container_title | International journal of engineering science |
container_volume | 37 |
creator | Sherief, Hany H. Megahed, Fouad A. |
description | Two-dimensional (2D) axisymmetric problems are considered within the context of the theory of thermoelasticity, with two relaxation times. The general solution is obtained in the Laplace transform domain by using a direct approach without the use of potential functions. The resulting formulation is utilized to solve a problem for a thick spherical shell. The surface of the shell is taken as traction free and subjected to given axisymmetric temperature distributions. The inversion of the Laplace transforms are carried out using the inversion formula of the transform together with Fourier expansion techniques. Numerical solutions are obtained for the temperature, displacement and stress distributions in the physical domain. Numerical results are represented graphically. |
doi_str_mv | 10.1016/S0020-7225(98)00070-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27234842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020722598000706</els_id><sourcerecordid>27234842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-e0331528eff95b0aff7e15a64a76e790ea6a11c0b40813cda67c4ac7b9f3af553</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhq2KSl1of0IlH1AFUkPtJLbjE1pB-ZCQqGB7thxnXIySeOvJAnvpb6-XRXDkNNLM88xoXkK-cnbEGZc_bhkrWaHKUhzo5pAxplghP5AZb5QuSq7VDpm9Ip_ILuJ9hkSl9Yz8WzzGogsDjBjiaHv6K8W2hwGpj4ku7iANEXqLU3BhWn-nj2G6o9mhN7n7ZKcs0UXWkYaR3i4zH1zecgN_8gTpauwg0flTwPUwwJSH9DRgru1qo-Jn8tHbHuHLS90jv89-Lk4uiqvr88uT-VXhKqmmAlhVcVE24L0WLbPeK-DCytoqCUozsNJy7lhbs4ZXrrNSudo61WpfWS9EtUe-bfcuU_y7ApzMENBB39sR4gpNqcqqbuoyg2ILuhQRE3izTGGwaW04M5u0zXPaZhOl0Y15TtvI7O2_HLCYA_DJji7gmyxFLUSdseMtBvnZhwDJoAswOuhCAjeZLoZ3Dv0HRgeW4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27234842</pqid></control><display><type>article</type><title>Two-dimensional Problems for Thermoelasticity, with Two Relaxation Times in Spherical Regions under Axisymmetric Distributions</title><source>ScienceDirect Journals</source><creator>Sherief, Hany H. ; Megahed, Fouad A.</creator><creatorcontrib>Sherief, Hany H. ; Megahed, Fouad A.</creatorcontrib><description>Two-dimensional (2D) axisymmetric problems are considered within the context of the theory of thermoelasticity, with two relaxation times. The general solution is obtained in the Laplace transform domain by using a direct approach without the use of potential functions. The resulting formulation is utilized to solve a problem for a thick spherical shell. The surface of the shell is taken as traction free and subjected to given axisymmetric temperature distributions. The inversion of the Laplace transforms are carried out using the inversion formula of the transform together with Fourier expansion techniques. Numerical solutions are obtained for the temperature, displacement and stress distributions in the physical domain. Numerical results are represented graphically.</description><identifier>ISSN: 0020-7225</identifier><identifier>EISSN: 1879-2197</identifier><identifier>DOI: 10.1016/S0020-7225(98)00070-6</identifier><identifier>CODEN: IJESAN</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>International journal of engineering science, 1999-02, Vol.37 (3), p.299-314</ispartof><rights>1998 Elsevier Science Ltd</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-e0331528eff95b0aff7e15a64a76e790ea6a11c0b40813cda67c4ac7b9f3af553</citedby><cites>FETCH-LOGICAL-c367t-e0331528eff95b0aff7e15a64a76e790ea6a11c0b40813cda67c4ac7b9f3af553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1654554$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sherief, Hany H.</creatorcontrib><creatorcontrib>Megahed, Fouad A.</creatorcontrib><title>Two-dimensional Problems for Thermoelasticity, with Two Relaxation Times in Spherical Regions under Axisymmetric Distributions</title><title>International journal of engineering science</title><description>Two-dimensional (2D) axisymmetric problems are considered within the context of the theory of thermoelasticity, with two relaxation times. The general solution is obtained in the Laplace transform domain by using a direct approach without the use of potential functions. The resulting formulation is utilized to solve a problem for a thick spherical shell. The surface of the shell is taken as traction free and subjected to given axisymmetric temperature distributions. The inversion of the Laplace transforms are carried out using the inversion formula of the transform together with Fourier expansion techniques. Numerical solutions are obtained for the temperature, displacement and stress distributions in the physical domain. Numerical results are represented graphically.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0020-7225</issn><issn>1879-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQhq2KSl1of0IlH1AFUkPtJLbjE1pB-ZCQqGB7thxnXIySeOvJAnvpb6-XRXDkNNLM88xoXkK-cnbEGZc_bhkrWaHKUhzo5pAxplghP5AZb5QuSq7VDpm9Ip_ILuJ9hkSl9Yz8WzzGogsDjBjiaHv6K8W2hwGpj4ku7iANEXqLU3BhWn-nj2G6o9mhN7n7ZKcs0UXWkYaR3i4zH1zecgN_8gTpauwg0flTwPUwwJSH9DRgru1qo-Jn8tHbHuHLS90jv89-Lk4uiqvr88uT-VXhKqmmAlhVcVE24L0WLbPeK-DCytoqCUozsNJy7lhbs4ZXrrNSudo61WpfWS9EtUe-bfcuU_y7ApzMENBB39sR4gpNqcqqbuoyg2ILuhQRE3izTGGwaW04M5u0zXPaZhOl0Y15TtvI7O2_HLCYA_DJji7gmyxFLUSdseMtBvnZhwDJoAswOuhCAjeZLoZ3Dv0HRgeW4w</recordid><startdate>19990201</startdate><enddate>19990201</enddate><creator>Sherief, Hany H.</creator><creator>Megahed, Fouad A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>19990201</creationdate><title>Two-dimensional Problems for Thermoelasticity, with Two Relaxation Times in Spherical Regions under Axisymmetric Distributions</title><author>Sherief, Hany H. ; Megahed, Fouad A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-e0331528eff95b0aff7e15a64a76e790ea6a11c0b40813cda67c4ac7b9f3af553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sherief, Hany H.</creatorcontrib><creatorcontrib>Megahed, Fouad A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sherief, Hany H.</au><au>Megahed, Fouad A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-dimensional Problems for Thermoelasticity, with Two Relaxation Times in Spherical Regions under Axisymmetric Distributions</atitle><jtitle>International journal of engineering science</jtitle><date>1999-02-01</date><risdate>1999</risdate><volume>37</volume><issue>3</issue><spage>299</spage><epage>314</epage><pages>299-314</pages><issn>0020-7225</issn><eissn>1879-2197</eissn><coden>IJESAN</coden><abstract>Two-dimensional (2D) axisymmetric problems are considered within the context of the theory of thermoelasticity, with two relaxation times. The general solution is obtained in the Laplace transform domain by using a direct approach without the use of potential functions. The resulting formulation is utilized to solve a problem for a thick spherical shell. The surface of the shell is taken as traction free and subjected to given axisymmetric temperature distributions. The inversion of the Laplace transforms are carried out using the inversion formula of the transform together with Fourier expansion techniques. Numerical solutions are obtained for the temperature, displacement and stress distributions in the physical domain. Numerical results are represented graphically.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7225(98)00070-6</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7225 |
ispartof | International journal of engineering science, 1999-02, Vol.37 (3), p.299-314 |
issn | 0020-7225 1879-2197 |
language | eng |
recordid | cdi_proquest_miscellaneous_27234842 |
source | ScienceDirect Journals |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Solid mechanics Static elasticity Static elasticity (thermoelasticity...) Structural and continuum mechanics |
title | Two-dimensional Problems for Thermoelasticity, with Two Relaxation Times in Spherical Regions under Axisymmetric Distributions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-dimensional%20Problems%20for%20Thermoelasticity,%20with%20Two%20Relaxation%20Times%20in%20Spherical%20Regions%20under%20Axisymmetric%20Distributions&rft.jtitle=International%20journal%20of%20engineering%20science&rft.au=Sherief,%20Hany%20H.&rft.date=1999-02-01&rft.volume=37&rft.issue=3&rft.spage=299&rft.epage=314&rft.pages=299-314&rft.issn=0020-7225&rft.eissn=1879-2197&rft.coden=IJESAN&rft_id=info:doi/10.1016/S0020-7225(98)00070-6&rft_dat=%3Cproquest_cross%3E27234842%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-e0331528eff95b0aff7e15a64a76e790ea6a11c0b40813cda67c4ac7b9f3af553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27234842&rft_id=info:pmid/&rfr_iscdi=true |