Loading…

Multi-Channel Attention Selection GANs for Guided Image-to-Image Translation

We propose a novel model named Multi-Channel Attention Selection Generative Adversarial Network (SelectionGAN) for guided image-to-image translation, where we translate an input image into another while respecting an external semantic guidance. The proposed SelectionGAN explicitly utilizes the seman...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2023-05, Vol.45 (5), p.1-16
Main Authors: Tang, Hao, Torr, Philip H.S., Sebe, Nicu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-dad799a5462b330cd09988f425c1e3b0e3f2540c963eda8135ba5369c39e937f3
cites cdi_FETCH-LOGICAL-c395t-dad799a5462b330cd09988f425c1e3b0e3f2540c963eda8135ba5369c39e937f3
container_end_page 16
container_issue 5
container_start_page 1
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 45
creator Tang, Hao
Torr, Philip H.S.
Sebe, Nicu
description We propose a novel model named Multi-Channel Attention Selection Generative Adversarial Network (SelectionGAN) for guided image-to-image translation, where we translate an input image into another while respecting an external semantic guidance. The proposed SelectionGAN explicitly utilizes the semantic guidance information and consists of two stages. In the first stage, the input image and the conditional semantic guidance are fed into a cycled semantic-guided generation network to produce initial coarse results. In the second stage, we refine the initial results by using the proposed multi-scale spatial pooling & channel selection module and the multi-channel attention selection module. Moreover, uncertainty maps automatically learned from attention maps are used to guide the pixel loss for better network optimization. Exhaustive experiments on four challenging guided image-to-image translation tasks (face, hand, body, and street view) demonstrate that our SelectionGAN is able to generate significantly better results than the state-of-the-art methods. Meanwhile, the proposed framework and modules are unified solutions and can be applied to solve other generation tasks such as semantic image synthesis. The code is available at  https://github.com/Ha0Tang/SelectionGAN .
doi_str_mv 10.1109/TPAMI.2022.3212915
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2723814573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9913676</ieee_id><sourcerecordid>2723814573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-dad799a5462b330cd09988f425c1e3b0e3f2540c963eda8135ba5369c39e937f3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-AQUJePGSujuT3WSPoWgttCpYz2GTTDQlHzWbHPz3Jm3twdMMzPMOMw9j14JPheD6Yf0WrhZT4ABTBAFayBM2Fhq1ixL1KRtzocANAghG7MLaDefCkxzP2QgVCIlKj9ly1RVt7s6-TFVR4YRtS1Wb15XzTgUlu24evlgnqxtn3uUppc6iNJ_ktrW7a5x1YypbmAG9ZGeZKSxdHeqEfTw9rmfP7vJ1vpiFSzdBLVs3NamvtZGeghiRJynXOggyD2QiCGNOmIH0eKIVUmoCgTI2w7V9mjT6GU7Y_X7vtqm_O7JtVOY2oaIwFdWdjcAHDPpffezRu3_opu6aqr-up7T0fQAFPQV7KmlqaxvKom2Tl6b5iQSPBtfRznU0uI4OrvvQ7WF1F5eUHiN_cnvgZg_kRHQcay1Q-Qp_Ae5VgL4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795772262</pqid></control><display><type>article</type><title>Multi-Channel Attention Selection GANs for Guided Image-to-Image Translation</title><source>IEEE Xplore (Online service)</source><creator>Tang, Hao ; Torr, Philip H.S. ; Sebe, Nicu</creator><creatorcontrib>Tang, Hao ; Torr, Philip H.S. ; Sebe, Nicu</creatorcontrib><description>We propose a novel model named Multi-Channel Attention Selection Generative Adversarial Network (SelectionGAN) for guided image-to-image translation, where we translate an input image into another while respecting an external semantic guidance. The proposed SelectionGAN explicitly utilizes the semantic guidance information and consists of two stages. In the first stage, the input image and the conditional semantic guidance are fed into a cycled semantic-guided generation network to produce initial coarse results. In the second stage, we refine the initial results by using the proposed multi-scale spatial pooling &amp; channel selection module and the multi-channel attention selection module. Moreover, uncertainty maps automatically learned from attention maps are used to guide the pixel loss for better network optimization. Exhaustive experiments on four challenging guided image-to-image translation tasks (face, hand, body, and street view) demonstrate that our SelectionGAN is able to generate significantly better results than the state-of-the-art methods. Meanwhile, the proposed framework and modules are unified solutions and can be applied to solve other generation tasks such as semantic image synthesis. The code is available at  https://github.com/Ha0Tang/SelectionGAN .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2022.3212915</identifier><identifier>PMID: 36215369</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cascade generation ; deep attention selection ; GANs ; Generative adversarial networks ; guided image-to-image translation ; Image segmentation ; Image synthesis ; Modules ; Network management systems ; Optimization ; Semantics ; Skeleton ; Task analysis ; Uncertainty</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-05, Vol.45 (5), p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-dad799a5462b330cd09988f425c1e3b0e3f2540c963eda8135ba5369c39e937f3</citedby><cites>FETCH-LOGICAL-c395t-dad799a5462b330cd09988f425c1e3b0e3f2540c963eda8135ba5369c39e937f3</cites><orcidid>0000-0002-2077-1246 ; 0000-0002-6597-7248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9913676$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36215369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Hao</creatorcontrib><creatorcontrib>Torr, Philip H.S.</creatorcontrib><creatorcontrib>Sebe, Nicu</creatorcontrib><title>Multi-Channel Attention Selection GANs for Guided Image-to-Image Translation</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We propose a novel model named Multi-Channel Attention Selection Generative Adversarial Network (SelectionGAN) for guided image-to-image translation, where we translate an input image into another while respecting an external semantic guidance. The proposed SelectionGAN explicitly utilizes the semantic guidance information and consists of two stages. In the first stage, the input image and the conditional semantic guidance are fed into a cycled semantic-guided generation network to produce initial coarse results. In the second stage, we refine the initial results by using the proposed multi-scale spatial pooling &amp; channel selection module and the multi-channel attention selection module. Moreover, uncertainty maps automatically learned from attention maps are used to guide the pixel loss for better network optimization. Exhaustive experiments on four challenging guided image-to-image translation tasks (face, hand, body, and street view) demonstrate that our SelectionGAN is able to generate significantly better results than the state-of-the-art methods. Meanwhile, the proposed framework and modules are unified solutions and can be applied to solve other generation tasks such as semantic image synthesis. The code is available at  https://github.com/Ha0Tang/SelectionGAN .</description><subject>Cascade generation</subject><subject>deep attention selection</subject><subject>GANs</subject><subject>Generative adversarial networks</subject><subject>guided image-to-image translation</subject><subject>Image segmentation</subject><subject>Image synthesis</subject><subject>Modules</subject><subject>Network management systems</subject><subject>Optimization</subject><subject>Semantics</subject><subject>Skeleton</subject><subject>Task analysis</subject><subject>Uncertainty</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbK3-AQUJePGSujuT3WSPoWgttCpYz2GTTDQlHzWbHPz3Jm3twdMMzPMOMw9j14JPheD6Yf0WrhZT4ABTBAFayBM2Fhq1ixL1KRtzocANAghG7MLaDefCkxzP2QgVCIlKj9ly1RVt7s6-TFVR4YRtS1Wb15XzTgUlu24evlgnqxtn3uUppc6iNJ_ktrW7a5x1YypbmAG9ZGeZKSxdHeqEfTw9rmfP7vJ1vpiFSzdBLVs3NamvtZGeghiRJynXOggyD2QiCGNOmIH0eKIVUmoCgTI2w7V9mjT6GU7Y_X7vtqm_O7JtVOY2oaIwFdWdjcAHDPpffezRu3_opu6aqr-up7T0fQAFPQV7KmlqaxvKom2Tl6b5iQSPBtfRznU0uI4OrvvQ7WF1F5eUHiN_cnvgZg_kRHQcay1Q-Qp_Ae5VgL4</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Tang, Hao</creator><creator>Torr, Philip H.S.</creator><creator>Sebe, Nicu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2077-1246</orcidid><orcidid>https://orcid.org/0000-0002-6597-7248</orcidid></search><sort><creationdate>20230501</creationdate><title>Multi-Channel Attention Selection GANs for Guided Image-to-Image Translation</title><author>Tang, Hao ; Torr, Philip H.S. ; Sebe, Nicu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-dad799a5462b330cd09988f425c1e3b0e3f2540c963eda8135ba5369c39e937f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cascade generation</topic><topic>deep attention selection</topic><topic>GANs</topic><topic>Generative adversarial networks</topic><topic>guided image-to-image translation</topic><topic>Image segmentation</topic><topic>Image synthesis</topic><topic>Modules</topic><topic>Network management systems</topic><topic>Optimization</topic><topic>Semantics</topic><topic>Skeleton</topic><topic>Task analysis</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Hao</creatorcontrib><creatorcontrib>Torr, Philip H.S.</creatorcontrib><creatorcontrib>Sebe, Nicu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Hao</au><au>Torr, Philip H.S.</au><au>Sebe, Nicu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Channel Attention Selection GANs for Guided Image-to-Image Translation</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>45</volume><issue>5</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>We propose a novel model named Multi-Channel Attention Selection Generative Adversarial Network (SelectionGAN) for guided image-to-image translation, where we translate an input image into another while respecting an external semantic guidance. The proposed SelectionGAN explicitly utilizes the semantic guidance information and consists of two stages. In the first stage, the input image and the conditional semantic guidance are fed into a cycled semantic-guided generation network to produce initial coarse results. In the second stage, we refine the initial results by using the proposed multi-scale spatial pooling &amp; channel selection module and the multi-channel attention selection module. Moreover, uncertainty maps automatically learned from attention maps are used to guide the pixel loss for better network optimization. Exhaustive experiments on four challenging guided image-to-image translation tasks (face, hand, body, and street view) demonstrate that our SelectionGAN is able to generate significantly better results than the state-of-the-art methods. Meanwhile, the proposed framework and modules are unified solutions and can be applied to solve other generation tasks such as semantic image synthesis. The code is available at  https://github.com/Ha0Tang/SelectionGAN .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36215369</pmid><doi>10.1109/TPAMI.2022.3212915</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2077-1246</orcidid><orcidid>https://orcid.org/0000-0002-6597-7248</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2023-05, Vol.45 (5), p.1-16
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_miscellaneous_2723814573
source IEEE Xplore (Online service)
subjects Cascade generation
deep attention selection
GANs
Generative adversarial networks
guided image-to-image translation
Image segmentation
Image synthesis
Modules
Network management systems
Optimization
Semantics
Skeleton
Task analysis
Uncertainty
title Multi-Channel Attention Selection GANs for Guided Image-to-Image Translation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Channel%20Attention%20Selection%20GANs%20for%20Guided%20Image-to-Image%20Translation&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Tang,%20Hao&rft.date=2023-05-01&rft.volume=45&rft.issue=5&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2022.3212915&rft_dat=%3Cproquest_ieee_%3E2723814573%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-dad799a5462b330cd09988f425c1e3b0e3f2540c963eda8135ba5369c39e937f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2795772262&rft_id=info:pmid/36215369&rft_ieee_id=9913676&rfr_iscdi=true