Loading…
Multi-Channel Attention Selection GANs for Guided Image-to-Image Translation
We propose a novel model named Multi-Channel Attention Selection Generative Adversarial Network (SelectionGAN) for guided image-to-image translation, where we translate an input image into another while respecting an external semantic guidance. The proposed SelectionGAN explicitly utilizes the seman...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2023-05, Vol.45 (5), p.1-16 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-dad799a5462b330cd09988f425c1e3b0e3f2540c963eda8135ba5369c39e937f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-dad799a5462b330cd09988f425c1e3b0e3f2540c963eda8135ba5369c39e937f3 |
container_end_page | 16 |
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 45 |
creator | Tang, Hao Torr, Philip H.S. Sebe, Nicu |
description | We propose a novel model named Multi-Channel Attention Selection Generative Adversarial Network (SelectionGAN) for guided image-to-image translation, where we translate an input image into another while respecting an external semantic guidance. The proposed SelectionGAN explicitly utilizes the semantic guidance information and consists of two stages. In the first stage, the input image and the conditional semantic guidance are fed into a cycled semantic-guided generation network to produce initial coarse results. In the second stage, we refine the initial results by using the proposed multi-scale spatial pooling & channel selection module and the multi-channel attention selection module. Moreover, uncertainty maps automatically learned from attention maps are used to guide the pixel loss for better network optimization. Exhaustive experiments on four challenging guided image-to-image translation tasks (face, hand, body, and street view) demonstrate that our SelectionGAN is able to generate significantly better results than the state-of-the-art methods. Meanwhile, the proposed framework and modules are unified solutions and can be applied to solve other generation tasks such as semantic image synthesis. The code is available at https://github.com/Ha0Tang/SelectionGAN . |
doi_str_mv | 10.1109/TPAMI.2022.3212915 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2723814573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9913676</ieee_id><sourcerecordid>2723814573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-dad799a5462b330cd09988f425c1e3b0e3f2540c963eda8135ba5369c39e937f3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-AQUJePGSujuT3WSPoWgttCpYz2GTTDQlHzWbHPz3Jm3twdMMzPMOMw9j14JPheD6Yf0WrhZT4ABTBAFayBM2Fhq1ixL1KRtzocANAghG7MLaDefCkxzP2QgVCIlKj9ly1RVt7s6-TFVR4YRtS1Wb15XzTgUlu24evlgnqxtn3uUppc6iNJ_ktrW7a5x1YypbmAG9ZGeZKSxdHeqEfTw9rmfP7vJ1vpiFSzdBLVs3NamvtZGeghiRJynXOggyD2QiCGNOmIH0eKIVUmoCgTI2w7V9mjT6GU7Y_X7vtqm_O7JtVOY2oaIwFdWdjcAHDPpffezRu3_opu6aqr-up7T0fQAFPQV7KmlqaxvKom2Tl6b5iQSPBtfRznU0uI4OrvvQ7WF1F5eUHiN_cnvgZg_kRHQcay1Q-Qp_Ae5VgL4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795772262</pqid></control><display><type>article</type><title>Multi-Channel Attention Selection GANs for Guided Image-to-Image Translation</title><source>IEEE Xplore (Online service)</source><creator>Tang, Hao ; Torr, Philip H.S. ; Sebe, Nicu</creator><creatorcontrib>Tang, Hao ; Torr, Philip H.S. ; Sebe, Nicu</creatorcontrib><description>We propose a novel model named Multi-Channel Attention Selection Generative Adversarial Network (SelectionGAN) for guided image-to-image translation, where we translate an input image into another while respecting an external semantic guidance. The proposed SelectionGAN explicitly utilizes the semantic guidance information and consists of two stages. In the first stage, the input image and the conditional semantic guidance are fed into a cycled semantic-guided generation network to produce initial coarse results. In the second stage, we refine the initial results by using the proposed multi-scale spatial pooling & channel selection module and the multi-channel attention selection module. Moreover, uncertainty maps automatically learned from attention maps are used to guide the pixel loss for better network optimization. Exhaustive experiments on four challenging guided image-to-image translation tasks (face, hand, body, and street view) demonstrate that our SelectionGAN is able to generate significantly better results than the state-of-the-art methods. Meanwhile, the proposed framework and modules are unified solutions and can be applied to solve other generation tasks such as semantic image synthesis. The code is available at https://github.com/Ha0Tang/SelectionGAN .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2022.3212915</identifier><identifier>PMID: 36215369</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cascade generation ; deep attention selection ; GANs ; Generative adversarial networks ; guided image-to-image translation ; Image segmentation ; Image synthesis ; Modules ; Network management systems ; Optimization ; Semantics ; Skeleton ; Task analysis ; Uncertainty</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-05, Vol.45 (5), p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-dad799a5462b330cd09988f425c1e3b0e3f2540c963eda8135ba5369c39e937f3</citedby><cites>FETCH-LOGICAL-c395t-dad799a5462b330cd09988f425c1e3b0e3f2540c963eda8135ba5369c39e937f3</cites><orcidid>0000-0002-2077-1246 ; 0000-0002-6597-7248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9913676$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36215369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Hao</creatorcontrib><creatorcontrib>Torr, Philip H.S.</creatorcontrib><creatorcontrib>Sebe, Nicu</creatorcontrib><title>Multi-Channel Attention Selection GANs for Guided Image-to-Image Translation</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We propose a novel model named Multi-Channel Attention Selection Generative Adversarial Network (SelectionGAN) for guided image-to-image translation, where we translate an input image into another while respecting an external semantic guidance. The proposed SelectionGAN explicitly utilizes the semantic guidance information and consists of two stages. In the first stage, the input image and the conditional semantic guidance are fed into a cycled semantic-guided generation network to produce initial coarse results. In the second stage, we refine the initial results by using the proposed multi-scale spatial pooling & channel selection module and the multi-channel attention selection module. Moreover, uncertainty maps automatically learned from attention maps are used to guide the pixel loss for better network optimization. Exhaustive experiments on four challenging guided image-to-image translation tasks (face, hand, body, and street view) demonstrate that our SelectionGAN is able to generate significantly better results than the state-of-the-art methods. Meanwhile, the proposed framework and modules are unified solutions and can be applied to solve other generation tasks such as semantic image synthesis. The code is available at https://github.com/Ha0Tang/SelectionGAN .</description><subject>Cascade generation</subject><subject>deep attention selection</subject><subject>GANs</subject><subject>Generative adversarial networks</subject><subject>guided image-to-image translation</subject><subject>Image segmentation</subject><subject>Image synthesis</subject><subject>Modules</subject><subject>Network management systems</subject><subject>Optimization</subject><subject>Semantics</subject><subject>Skeleton</subject><subject>Task analysis</subject><subject>Uncertainty</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbK3-AQUJePGSujuT3WSPoWgttCpYz2GTTDQlHzWbHPz3Jm3twdMMzPMOMw9j14JPheD6Yf0WrhZT4ABTBAFayBM2Fhq1ixL1KRtzocANAghG7MLaDefCkxzP2QgVCIlKj9ly1RVt7s6-TFVR4YRtS1Wb15XzTgUlu24evlgnqxtn3uUppc6iNJ_ktrW7a5x1YypbmAG9ZGeZKSxdHeqEfTw9rmfP7vJ1vpiFSzdBLVs3NamvtZGeghiRJynXOggyD2QiCGNOmIH0eKIVUmoCgTI2w7V9mjT6GU7Y_X7vtqm_O7JtVOY2oaIwFdWdjcAHDPpffezRu3_opu6aqr-up7T0fQAFPQV7KmlqaxvKom2Tl6b5iQSPBtfRznU0uI4OrvvQ7WF1F5eUHiN_cnvgZg_kRHQcay1Q-Qp_Ae5VgL4</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Tang, Hao</creator><creator>Torr, Philip H.S.</creator><creator>Sebe, Nicu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2077-1246</orcidid><orcidid>https://orcid.org/0000-0002-6597-7248</orcidid></search><sort><creationdate>20230501</creationdate><title>Multi-Channel Attention Selection GANs for Guided Image-to-Image Translation</title><author>Tang, Hao ; Torr, Philip H.S. ; Sebe, Nicu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-dad799a5462b330cd09988f425c1e3b0e3f2540c963eda8135ba5369c39e937f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cascade generation</topic><topic>deep attention selection</topic><topic>GANs</topic><topic>Generative adversarial networks</topic><topic>guided image-to-image translation</topic><topic>Image segmentation</topic><topic>Image synthesis</topic><topic>Modules</topic><topic>Network management systems</topic><topic>Optimization</topic><topic>Semantics</topic><topic>Skeleton</topic><topic>Task analysis</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Hao</creatorcontrib><creatorcontrib>Torr, Philip H.S.</creatorcontrib><creatorcontrib>Sebe, Nicu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Hao</au><au>Torr, Philip H.S.</au><au>Sebe, Nicu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Channel Attention Selection GANs for Guided Image-to-Image Translation</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>45</volume><issue>5</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>We propose a novel model named Multi-Channel Attention Selection Generative Adversarial Network (SelectionGAN) for guided image-to-image translation, where we translate an input image into another while respecting an external semantic guidance. The proposed SelectionGAN explicitly utilizes the semantic guidance information and consists of two stages. In the first stage, the input image and the conditional semantic guidance are fed into a cycled semantic-guided generation network to produce initial coarse results. In the second stage, we refine the initial results by using the proposed multi-scale spatial pooling & channel selection module and the multi-channel attention selection module. Moreover, uncertainty maps automatically learned from attention maps are used to guide the pixel loss for better network optimization. Exhaustive experiments on four challenging guided image-to-image translation tasks (face, hand, body, and street view) demonstrate that our SelectionGAN is able to generate significantly better results than the state-of-the-art methods. Meanwhile, the proposed framework and modules are unified solutions and can be applied to solve other generation tasks such as semantic image synthesis. The code is available at https://github.com/Ha0Tang/SelectionGAN .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36215369</pmid><doi>10.1109/TPAMI.2022.3212915</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2077-1246</orcidid><orcidid>https://orcid.org/0000-0002-6597-7248</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2023-05, Vol.45 (5), p.1-16 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_miscellaneous_2723814573 |
source | IEEE Xplore (Online service) |
subjects | Cascade generation deep attention selection GANs Generative adversarial networks guided image-to-image translation Image segmentation Image synthesis Modules Network management systems Optimization Semantics Skeleton Task analysis Uncertainty |
title | Multi-Channel Attention Selection GANs for Guided Image-to-Image Translation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Channel%20Attention%20Selection%20GANs%20for%20Guided%20Image-to-Image%20Translation&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Tang,%20Hao&rft.date=2023-05-01&rft.volume=45&rft.issue=5&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2022.3212915&rft_dat=%3Cproquest_ieee_%3E2723814573%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-dad799a5462b330cd09988f425c1e3b0e3f2540c963eda8135ba5369c39e937f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2795772262&rft_id=info:pmid/36215369&rft_ieee_id=9913676&rfr_iscdi=true |