Loading…
Polarization effects on ablation efficiency and microstructure symmetricity in femtosecond laser processing of materials—developing a pattern generation model for laser scanning
This paper investigated the effects of femtosecond laser beam polarization on ablation efficiency and microstructure symmetricity for 64FeNi alloy (Invar) sheet processing to fabricate fine metal masks. It was found that the ablation efficiency for linear polarization was approximately 15% higher th...
Saved in:
Published in: | Optics express 2022-05, Vol.30 (11), p.18018-18031 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1427-e4a4b5bb1f4ef9896056f5571f78b0e10ef5580500d2a2b7eb1ac26f578f575e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c1427-e4a4b5bb1f4ef9896056f5571f78b0e10ef5580500d2a2b7eb1ac26f578f575e3 |
container_end_page | 18031 |
container_issue | 11 |
container_start_page | 18018 |
container_title | Optics express |
container_volume | 30 |
creator | Shin, Sungkwon Hur, Jun-Gyu Park, Jong Kab Kim, Doh-Hoon |
description | This paper investigated the effects of femtosecond laser beam polarization on ablation efficiency and microstructure symmetricity for 64FeNi alloy (Invar) sheet processing to fabricate fine metal masks. It was found that the ablation efficiency for linear polarization was approximately 15% higher than that for circular polarization due to electric field enhancement induced by low-spatial-frequency laser-induced periodic surface structures (LIPSS). The hole size and sidewall taper angles for the microstructures generated by linear polarization were asymmetric, whereas those generated by circular polarization were symmetric due to non-oriented LIPSS. The asymmetric and symmetric three-dimensional microstructure profiles, measured by using a confocal laser scanning microscope, were verified by employing an analytical model that was derived using the total input fluence and the ablation rates for linear and circular polarizations, respectively. |
doi_str_mv | 10.1364/OE.459377 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2724238965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724238965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1427-e4a4b5bb1f4ef9896056f5571f78b0e10ef5580500d2a2b7eb1ac26f578f575e3</originalsourceid><addsrcrecordid>eNpNkc1KxDAQx4souK4efIMc9dA1adNNe5Rl_YCF9aDnkqaTJZImNUmFevIhfBPfyCcxSxfxMMzXj_8wM0lySfCC5Et6s10vaFHljB0lM4IrmlJcsuN_8Wly5v0rxoSyis2S7yeruVMfPChrEEgJIngUQ97ov5oSCowYETct6pRw1gc3iDA4QH7sOgguEmFEyiAJXbAehI2o5h4c6p0V4L0yO2Ql6ngAp7j2P59fLbyDtv2-w1HPQ-wYtAMDbprc2RY0ktYdlLzgxkT6PDmRUQEuDn6evNytn1cP6WZ7_7i63aSC0IylQDltiqYhkoKsymqJi6UsCkYkKxsMBEPMSlxg3GY8axg0hIssIqyMVkA-T64m3bjC2wA-1J3yArTmBuzg64xlNMujcBHR6wndH8c7kHXvVMfdWBNc7x9Tb9f19Jj8FymNhzM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724238965</pqid></control><display><type>article</type><title>Polarization effects on ablation efficiency and microstructure symmetricity in femtosecond laser processing of materials—developing a pattern generation model for laser scanning</title><source>EZB Electronic Journals Library</source><creator>Shin, Sungkwon ; Hur, Jun-Gyu ; Park, Jong Kab ; Kim, Doh-Hoon</creator><creatorcontrib>Shin, Sungkwon ; Hur, Jun-Gyu ; Park, Jong Kab ; Kim, Doh-Hoon</creatorcontrib><description>This paper investigated the effects of femtosecond laser beam polarization on ablation efficiency and microstructure symmetricity for 64FeNi alloy (Invar) sheet processing to fabricate fine metal masks. It was found that the ablation efficiency for linear polarization was approximately 15% higher than that for circular polarization due to electric field enhancement induced by low-spatial-frequency laser-induced periodic surface structures (LIPSS). The hole size and sidewall taper angles for the microstructures generated by linear polarization were asymmetric, whereas those generated by circular polarization were symmetric due to non-oriented LIPSS. The asymmetric and symmetric three-dimensional microstructure profiles, measured by using a confocal laser scanning microscope, were verified by employing an analytical model that was derived using the total input fluence and the ablation rates for linear and circular polarizations, respectively.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.459377</identifier><language>eng</language><ispartof>Optics express, 2022-05, Vol.30 (11), p.18018-18031</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1427-e4a4b5bb1f4ef9896056f5571f78b0e10ef5580500d2a2b7eb1ac26f578f575e3</citedby><cites>FETCH-LOGICAL-c1427-e4a4b5bb1f4ef9896056f5571f78b0e10ef5580500d2a2b7eb1ac26f578f575e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Shin, Sungkwon</creatorcontrib><creatorcontrib>Hur, Jun-Gyu</creatorcontrib><creatorcontrib>Park, Jong Kab</creatorcontrib><creatorcontrib>Kim, Doh-Hoon</creatorcontrib><title>Polarization effects on ablation efficiency and microstructure symmetricity in femtosecond laser processing of materials—developing a pattern generation model for laser scanning</title><title>Optics express</title><description>This paper investigated the effects of femtosecond laser beam polarization on ablation efficiency and microstructure symmetricity for 64FeNi alloy (Invar) sheet processing to fabricate fine metal masks. It was found that the ablation efficiency for linear polarization was approximately 15% higher than that for circular polarization due to electric field enhancement induced by low-spatial-frequency laser-induced periodic surface structures (LIPSS). The hole size and sidewall taper angles for the microstructures generated by linear polarization were asymmetric, whereas those generated by circular polarization were symmetric due to non-oriented LIPSS. The asymmetric and symmetric three-dimensional microstructure profiles, measured by using a confocal laser scanning microscope, were verified by employing an analytical model that was derived using the total input fluence and the ablation rates for linear and circular polarizations, respectively.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkc1KxDAQx4souK4efIMc9dA1adNNe5Rl_YCF9aDnkqaTJZImNUmFevIhfBPfyCcxSxfxMMzXj_8wM0lySfCC5Et6s10vaFHljB0lM4IrmlJcsuN_8Wly5v0rxoSyis2S7yeruVMfPChrEEgJIngUQ97ov5oSCowYETct6pRw1gc3iDA4QH7sOgguEmFEyiAJXbAehI2o5h4c6p0V4L0yO2Ql6ngAp7j2P59fLbyDtv2-w1HPQ-wYtAMDbprc2RY0ktYdlLzgxkT6PDmRUQEuDn6evNytn1cP6WZ7_7i63aSC0IylQDltiqYhkoKsymqJi6UsCkYkKxsMBEPMSlxg3GY8axg0hIssIqyMVkA-T64m3bjC2wA-1J3yArTmBuzg64xlNMujcBHR6wndH8c7kHXvVMfdWBNc7x9Tb9f19Jj8FymNhzM</recordid><startdate>20220523</startdate><enddate>20220523</enddate><creator>Shin, Sungkwon</creator><creator>Hur, Jun-Gyu</creator><creator>Park, Jong Kab</creator><creator>Kim, Doh-Hoon</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220523</creationdate><title>Polarization effects on ablation efficiency and microstructure symmetricity in femtosecond laser processing of materials—developing a pattern generation model for laser scanning</title><author>Shin, Sungkwon ; Hur, Jun-Gyu ; Park, Jong Kab ; Kim, Doh-Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1427-e4a4b5bb1f4ef9896056f5571f78b0e10ef5580500d2a2b7eb1ac26f578f575e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Sungkwon</creatorcontrib><creatorcontrib>Hur, Jun-Gyu</creatorcontrib><creatorcontrib>Park, Jong Kab</creatorcontrib><creatorcontrib>Kim, Doh-Hoon</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Sungkwon</au><au>Hur, Jun-Gyu</au><au>Park, Jong Kab</au><au>Kim, Doh-Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polarization effects on ablation efficiency and microstructure symmetricity in femtosecond laser processing of materials—developing a pattern generation model for laser scanning</atitle><jtitle>Optics express</jtitle><date>2022-05-23</date><risdate>2022</risdate><volume>30</volume><issue>11</issue><spage>18018</spage><epage>18031</epage><pages>18018-18031</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>This paper investigated the effects of femtosecond laser beam polarization on ablation efficiency and microstructure symmetricity for 64FeNi alloy (Invar) sheet processing to fabricate fine metal masks. It was found that the ablation efficiency for linear polarization was approximately 15% higher than that for circular polarization due to electric field enhancement induced by low-spatial-frequency laser-induced periodic surface structures (LIPSS). The hole size and sidewall taper angles for the microstructures generated by linear polarization were asymmetric, whereas those generated by circular polarization were symmetric due to non-oriented LIPSS. The asymmetric and symmetric three-dimensional microstructure profiles, measured by using a confocal laser scanning microscope, were verified by employing an analytical model that was derived using the total input fluence and the ablation rates for linear and circular polarizations, respectively.</abstract><doi>10.1364/OE.459377</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2022-05, Vol.30 (11), p.18018-18031 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_2724238965 |
source | EZB Electronic Journals Library |
title | Polarization effects on ablation efficiency and microstructure symmetricity in femtosecond laser processing of materials—developing a pattern generation model for laser scanning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A33%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polarization%20effects%20on%20ablation%20efficiency%20and%20microstructure%20symmetricity%20in%20femtosecond%20laser%20processing%20of%20materials%E2%80%94developing%20a%20pattern%20generation%20model%20for%20laser%20scanning&rft.jtitle=Optics%20express&rft.au=Shin,%20Sungkwon&rft.date=2022-05-23&rft.volume=30&rft.issue=11&rft.spage=18018&rft.epage=18031&rft.pages=18018-18031&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.459377&rft_dat=%3Cproquest_cross%3E2724238965%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1427-e4a4b5bb1f4ef9896056f5571f78b0e10ef5580500d2a2b7eb1ac26f578f575e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2724238965&rft_id=info:pmid/&rfr_iscdi=true |