Loading…

Anisotropic material-field series expansion for the topological design of optical metalens

To determine an effective optimization strategy and facilitate the manufacture of optical metalenses, this paper extends the material-field series-expansion (MFSE) method for the topology design of metalenses. A new anisotropic material-field function with a spatially anisotropic correlation is intr...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2022-05, Vol.30 (10), p.16459-16478
Main Authors: Sun, Zhaoyou, Liu, Pai, Luo, Yangjun
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To determine an effective optimization strategy and facilitate the manufacture of optical metalenses, this paper extends the material-field series-expansion (MFSE) method for the topology design of metalenses. A new anisotropic material-field function with a spatially anisotropic correlation is introduced to describe the structural topology in a narrow design domain. The topological features can be implicitly controlled by material-field correlation lengths in different directions. Then, a generalized sigmoid projection is introduced to construct an interpolation relationship between the unbounded material-field value and the relative permittivity. Based on the series expansion technique, the number of design variables is greatly reduced in this topology optimization process without requiring additional material-field bounded constraints. The MFSE-based metalens design problem is efficiently solved by using a gradient-based algorithm incorporating design sensitivity analysis. Numerical examples demonstrate that the proposed optimization algorithm can successfully obtain an optimized and easy-to-manufacture design in optics inverse design problems.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.457715