Loading…

Performance of Artificial Intelligence‐Aided Diagnosis System for Clinically Significant Prostate Cancer with MRI: A Diagnostic Comparison Study

Background The high level of expertise required for accurate interpretation of prostate MRI. Purpose To develop and test an artificial intelligence (AI) system for diagnosis of clinically significant prostate cancer (CsPC) with MRI. Study Type Retrospective. Subjects One thousand two hundred thirty...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetic resonance imaging 2023-05, Vol.57 (5), p.1352-1364
Main Authors: Jiang, Ke‐Wen, Song, Yang, Hou, Ying, Zhi, Rui, Zhang, Jing, Bao, Mei‐Ling, Li, Hai, Yan, Xu, Xi, Wei, Zhang, Cheng‐Xiu, Yao, Ye‐Feng, Yang, Guang, Zhang, Yu‐Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3577-520d31b2123637400a155ddaa6ce5d1fe4c1a137437a910b9f784348ae2c6d9c3
cites cdi_FETCH-LOGICAL-c3577-520d31b2123637400a155ddaa6ce5d1fe4c1a137437a910b9f784348ae2c6d9c3
container_end_page 1364
container_issue 5
container_start_page 1352
container_title Journal of magnetic resonance imaging
container_volume 57
creator Jiang, Ke‐Wen
Song, Yang
Hou, Ying
Zhi, Rui
Zhang, Jing
Bao, Mei‐Ling
Li, Hai
Yan, Xu
Xi, Wei
Zhang, Cheng‐Xiu
Yao, Ye‐Feng
Yang, Guang
Zhang, Yu‐Dong
description Background The high level of expertise required for accurate interpretation of prostate MRI. Purpose To develop and test an artificial intelligence (AI) system for diagnosis of clinically significant prostate cancer (CsPC) with MRI. Study Type Retrospective. Subjects One thousand two hundred thirty patients from derivation cohort between Jan 2012 and Oct 2019, and 169 patients from a publicly available data (U‐Net: 423 for training/validation and 49 for test and TrumpeNet: 820 for training/validation and 579 for test). Field Strength/Sequence 3.0T/scanners, T2‐weighted imaging (T2WI), diffusion‐weighted imaging, and apparent diffusion coefficient map. Assessment Close‐loop AI system was trained with an Unet for prostate segmentation and a TrumpetNet for CsPC detection. Performance of AI was tested in 410 internal and 169 external sets against 24 radiologists categorizing into junior, general and subspecialist group. Gleason score >6 was identified as CsPC at pathology. Statistical Tests Area under the receiver operating characteristic curve (AUC‐ROC); Delong test; Meta‐regression I2 analysis. Results In average, for internal test, AI had lower AUC‐ROC than subspecialists (0.85 vs. 0.92, P 
doi_str_mv 10.1002/jmri.28427
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2724240042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724240042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3577-520d31b2123637400a155ddaa6ce5d1fe4c1a137437a910b9f784348ae2c6d9c3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhiMEoqVw4QGQJS4IKcUe23HCbRVo2aqIioVz5LWdxavEXmxHVW48Auoj9knwsm0PHDh5pPnmk2f-onhJ8CnBGN5tx2BPoWYgHhXHhAOUwOvqca4xpyWpsTgqnsW4xRg3DeNPiyNaAQAFdlzcXJnQ-zBKpwzyPVqEZHurrBzQ0iUzDHZjcuv21--F1UajD1ZunI82otUckxlRHkbtYJ1VchhmtLIbtxdIl9BV8DHJZFC7twd0bdMP9Pnr8j1a3HuSVaj1404GG71DqzTp-XnxpJdDNC_u3pPi-9nHb-2n8vLL-bJdXJaKciFKDlhTsgYCtKKCYSwJ51pLWSnDNekNU0SS3KFCNgSvm17UjLJaGlCVbhQ9Kd4cvLvgf04mpm60UeWVpTN-ih0IYJC9DDL6-h9066fg8u8y1fCmaggTmXp7oFRePAbTd7tgRxnmjuBun1S3T6r7m1SGX90pp_Vo9AN6H00GyAG4toOZ_6PqLvJND9I_z0-fvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795969147</pqid></control><display><type>article</type><title>Performance of Artificial Intelligence‐Aided Diagnosis System for Clinically Significant Prostate Cancer with MRI: A Diagnostic Comparison Study</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Jiang, Ke‐Wen ; Song, Yang ; Hou, Ying ; Zhi, Rui ; Zhang, Jing ; Bao, Mei‐Ling ; Li, Hai ; Yan, Xu ; Xi, Wei ; Zhang, Cheng‐Xiu ; Yao, Ye‐Feng ; Yang, Guang ; Zhang, Yu‐Dong</creator><creatorcontrib>Jiang, Ke‐Wen ; Song, Yang ; Hou, Ying ; Zhi, Rui ; Zhang, Jing ; Bao, Mei‐Ling ; Li, Hai ; Yan, Xu ; Xi, Wei ; Zhang, Cheng‐Xiu ; Yao, Ye‐Feng ; Yang, Guang ; Zhang, Yu‐Dong</creatorcontrib><description>Background The high level of expertise required for accurate interpretation of prostate MRI. Purpose To develop and test an artificial intelligence (AI) system for diagnosis of clinically significant prostate cancer (CsPC) with MRI. Study Type Retrospective. Subjects One thousand two hundred thirty patients from derivation cohort between Jan 2012 and Oct 2019, and 169 patients from a publicly available data (U‐Net: 423 for training/validation and 49 for test and TrumpeNet: 820 for training/validation and 579 for test). Field Strength/Sequence 3.0T/scanners, T2‐weighted imaging (T2WI), diffusion‐weighted imaging, and apparent diffusion coefficient map. Assessment Close‐loop AI system was trained with an Unet for prostate segmentation and a TrumpetNet for CsPC detection. Performance of AI was tested in 410 internal and 169 external sets against 24 radiologists categorizing into junior, general and subspecialist group. Gleason score &gt;6 was identified as CsPC at pathology. Statistical Tests Area under the receiver operating characteristic curve (AUC‐ROC); Delong test; Meta‐regression I2 analysis. Results In average, for internal test, AI had lower AUC‐ROC than subspecialists (0.85 vs. 0.92, P &lt; 0.05), and was comparable to junior (0.84, P = 0.76) and general group (0.86, P = 0.35). For external test, both AI (0.86) and subspecialist (0.86) had higher AUC than junior (0.80, P &lt; 0.05) and general reader (0.83, P &lt; 0.05). In individual, it revealed moderate diagnostic heterogeneity in 24 readers (Mantel–Haenszel I2 = 56.8%, P &lt; 0.01), and AI outperformed 54.2% (13/24) of readers in summary ROC analysis. In multivariate test, Gleason score, zonal location, PI‐RADS score and lesion size significantly impacted the accuracy of AI; while effect of data source, MR device and parameter settings on AI performance is insignificant (P &gt; 0.05). Data Conclusion Our AI system can match and to some case exceed clinicians for the diagnosis of CsPC with prostate MRI. Evidence Level 3 Technical Efficacy Stage 2</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.28427</identifier><identifier>PMID: 36222324</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Artificial Intelligence ; biparametric MRI ; Clinical significance ; clinically significant prostate cancer ; deep learning ; Diagnosis ; Diagnostic systems ; Diffusion coefficient ; Diffusion Magnetic Resonance Imaging - methods ; Field strength ; Heterogeneity ; Humans ; Image segmentation ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Medical imaging ; Prostate cancer ; Prostatic Neoplasms - pathology ; Retrospective Studies ; Statistical analysis ; Statistical tests ; the Prostate Imaging Reporting and Data System ; Training</subject><ispartof>Journal of magnetic resonance imaging, 2023-05, Vol.57 (5), p.1352-1364</ispartof><rights>2022 International Society for Magnetic Resonance in Medicine.</rights><rights>2023 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3577-520d31b2123637400a155ddaa6ce5d1fe4c1a137437a910b9f784348ae2c6d9c3</citedby><cites>FETCH-LOGICAL-c3577-520d31b2123637400a155ddaa6ce5d1fe4c1a137437a910b9f784348ae2c6d9c3</cites><orcidid>0000-0002-2811-7513 ; 0000-0001-8356-567X ; 0000-0001-8942-427X ; 0000-0001-7426-4496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36222324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Ke‐Wen</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Hou, Ying</creatorcontrib><creatorcontrib>Zhi, Rui</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Bao, Mei‐Ling</creatorcontrib><creatorcontrib>Li, Hai</creatorcontrib><creatorcontrib>Yan, Xu</creatorcontrib><creatorcontrib>Xi, Wei</creatorcontrib><creatorcontrib>Zhang, Cheng‐Xiu</creatorcontrib><creatorcontrib>Yao, Ye‐Feng</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Zhang, Yu‐Dong</creatorcontrib><title>Performance of Artificial Intelligence‐Aided Diagnosis System for Clinically Significant Prostate Cancer with MRI: A Diagnostic Comparison Study</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background The high level of expertise required for accurate interpretation of prostate MRI. Purpose To develop and test an artificial intelligence (AI) system for diagnosis of clinically significant prostate cancer (CsPC) with MRI. Study Type Retrospective. Subjects One thousand two hundred thirty patients from derivation cohort between Jan 2012 and Oct 2019, and 169 patients from a publicly available data (U‐Net: 423 for training/validation and 49 for test and TrumpeNet: 820 for training/validation and 579 for test). Field Strength/Sequence 3.0T/scanners, T2‐weighted imaging (T2WI), diffusion‐weighted imaging, and apparent diffusion coefficient map. Assessment Close‐loop AI system was trained with an Unet for prostate segmentation and a TrumpetNet for CsPC detection. Performance of AI was tested in 410 internal and 169 external sets against 24 radiologists categorizing into junior, general and subspecialist group. Gleason score &gt;6 was identified as CsPC at pathology. Statistical Tests Area under the receiver operating characteristic curve (AUC‐ROC); Delong test; Meta‐regression I2 analysis. Results In average, for internal test, AI had lower AUC‐ROC than subspecialists (0.85 vs. 0.92, P &lt; 0.05), and was comparable to junior (0.84, P = 0.76) and general group (0.86, P = 0.35). For external test, both AI (0.86) and subspecialist (0.86) had higher AUC than junior (0.80, P &lt; 0.05) and general reader (0.83, P &lt; 0.05). In individual, it revealed moderate diagnostic heterogeneity in 24 readers (Mantel–Haenszel I2 = 56.8%, P &lt; 0.01), and AI outperformed 54.2% (13/24) of readers in summary ROC analysis. In multivariate test, Gleason score, zonal location, PI‐RADS score and lesion size significantly impacted the accuracy of AI; while effect of data source, MR device and parameter settings on AI performance is insignificant (P &gt; 0.05). Data Conclusion Our AI system can match and to some case exceed clinicians for the diagnosis of CsPC with prostate MRI. Evidence Level 3 Technical Efficacy Stage 2</description><subject>Artificial Intelligence</subject><subject>biparametric MRI</subject><subject>Clinical significance</subject><subject>clinically significant prostate cancer</subject><subject>deep learning</subject><subject>Diagnosis</subject><subject>Diagnostic systems</subject><subject>Diffusion coefficient</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Field strength</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Image segmentation</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Retrospective Studies</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>the Prostate Imaging Reporting and Data System</subject><subject>Training</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhiMEoqVw4QGQJS4IKcUe23HCbRVo2aqIioVz5LWdxavEXmxHVW48Auoj9knwsm0PHDh5pPnmk2f-onhJ8CnBGN5tx2BPoWYgHhXHhAOUwOvqca4xpyWpsTgqnsW4xRg3DeNPiyNaAQAFdlzcXJnQ-zBKpwzyPVqEZHurrBzQ0iUzDHZjcuv21--F1UajD1ZunI82otUckxlRHkbtYJ1VchhmtLIbtxdIl9BV8DHJZFC7twd0bdMP9Pnr8j1a3HuSVaj1404GG71DqzTp-XnxpJdDNC_u3pPi-9nHb-2n8vLL-bJdXJaKciFKDlhTsgYCtKKCYSwJ51pLWSnDNekNU0SS3KFCNgSvm17UjLJaGlCVbhQ9Kd4cvLvgf04mpm60UeWVpTN-ih0IYJC9DDL6-h9066fg8u8y1fCmaggTmXp7oFRePAbTd7tgRxnmjuBun1S3T6r7m1SGX90pp_Vo9AN6H00GyAG4toOZ_6PqLvJND9I_z0-fvA</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Jiang, Ke‐Wen</creator><creator>Song, Yang</creator><creator>Hou, Ying</creator><creator>Zhi, Rui</creator><creator>Zhang, Jing</creator><creator>Bao, Mei‐Ling</creator><creator>Li, Hai</creator><creator>Yan, Xu</creator><creator>Xi, Wei</creator><creator>Zhang, Cheng‐Xiu</creator><creator>Yao, Ye‐Feng</creator><creator>Yang, Guang</creator><creator>Zhang, Yu‐Dong</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2811-7513</orcidid><orcidid>https://orcid.org/0000-0001-8356-567X</orcidid><orcidid>https://orcid.org/0000-0001-8942-427X</orcidid><orcidid>https://orcid.org/0000-0001-7426-4496</orcidid></search><sort><creationdate>202305</creationdate><title>Performance of Artificial Intelligence‐Aided Diagnosis System for Clinically Significant Prostate Cancer with MRI: A Diagnostic Comparison Study</title><author>Jiang, Ke‐Wen ; Song, Yang ; Hou, Ying ; Zhi, Rui ; Zhang, Jing ; Bao, Mei‐Ling ; Li, Hai ; Yan, Xu ; Xi, Wei ; Zhang, Cheng‐Xiu ; Yao, Ye‐Feng ; Yang, Guang ; Zhang, Yu‐Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3577-520d31b2123637400a155ddaa6ce5d1fe4c1a137437a910b9f784348ae2c6d9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>biparametric MRI</topic><topic>Clinical significance</topic><topic>clinically significant prostate cancer</topic><topic>deep learning</topic><topic>Diagnosis</topic><topic>Diagnostic systems</topic><topic>Diffusion coefficient</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Field strength</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Image segmentation</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Retrospective Studies</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>the Prostate Imaging Reporting and Data System</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Ke‐Wen</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Hou, Ying</creatorcontrib><creatorcontrib>Zhi, Rui</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Bao, Mei‐Ling</creatorcontrib><creatorcontrib>Li, Hai</creatorcontrib><creatorcontrib>Yan, Xu</creatorcontrib><creatorcontrib>Xi, Wei</creatorcontrib><creatorcontrib>Zhang, Cheng‐Xiu</creatorcontrib><creatorcontrib>Yao, Ye‐Feng</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Zhang, Yu‐Dong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Ke‐Wen</au><au>Song, Yang</au><au>Hou, Ying</au><au>Zhi, Rui</au><au>Zhang, Jing</au><au>Bao, Mei‐Ling</au><au>Li, Hai</au><au>Yan, Xu</au><au>Xi, Wei</au><au>Zhang, Cheng‐Xiu</au><au>Yao, Ye‐Feng</au><au>Yang, Guang</au><au>Zhang, Yu‐Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of Artificial Intelligence‐Aided Diagnosis System for Clinically Significant Prostate Cancer with MRI: A Diagnostic Comparison Study</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2023-05</date><risdate>2023</risdate><volume>57</volume><issue>5</issue><spage>1352</spage><epage>1364</epage><pages>1352-1364</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background The high level of expertise required for accurate interpretation of prostate MRI. Purpose To develop and test an artificial intelligence (AI) system for diagnosis of clinically significant prostate cancer (CsPC) with MRI. Study Type Retrospective. Subjects One thousand two hundred thirty patients from derivation cohort between Jan 2012 and Oct 2019, and 169 patients from a publicly available data (U‐Net: 423 for training/validation and 49 for test and TrumpeNet: 820 for training/validation and 579 for test). Field Strength/Sequence 3.0T/scanners, T2‐weighted imaging (T2WI), diffusion‐weighted imaging, and apparent diffusion coefficient map. Assessment Close‐loop AI system was trained with an Unet for prostate segmentation and a TrumpetNet for CsPC detection. Performance of AI was tested in 410 internal and 169 external sets against 24 radiologists categorizing into junior, general and subspecialist group. Gleason score &gt;6 was identified as CsPC at pathology. Statistical Tests Area under the receiver operating characteristic curve (AUC‐ROC); Delong test; Meta‐regression I2 analysis. Results In average, for internal test, AI had lower AUC‐ROC than subspecialists (0.85 vs. 0.92, P &lt; 0.05), and was comparable to junior (0.84, P = 0.76) and general group (0.86, P = 0.35). For external test, both AI (0.86) and subspecialist (0.86) had higher AUC than junior (0.80, P &lt; 0.05) and general reader (0.83, P &lt; 0.05). In individual, it revealed moderate diagnostic heterogeneity in 24 readers (Mantel–Haenszel I2 = 56.8%, P &lt; 0.01), and AI outperformed 54.2% (13/24) of readers in summary ROC analysis. In multivariate test, Gleason score, zonal location, PI‐RADS score and lesion size significantly impacted the accuracy of AI; while effect of data source, MR device and parameter settings on AI performance is insignificant (P &gt; 0.05). Data Conclusion Our AI system can match and to some case exceed clinicians for the diagnosis of CsPC with prostate MRI. Evidence Level 3 Technical Efficacy Stage 2</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36222324</pmid><doi>10.1002/jmri.28427</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2811-7513</orcidid><orcidid>https://orcid.org/0000-0001-8356-567X</orcidid><orcidid>https://orcid.org/0000-0001-8942-427X</orcidid><orcidid>https://orcid.org/0000-0001-7426-4496</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2023-05, Vol.57 (5), p.1352-1364
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_miscellaneous_2724240042
source Wiley-Blackwell Read & Publish Collection
subjects Artificial Intelligence
biparametric MRI
Clinical significance
clinically significant prostate cancer
deep learning
Diagnosis
Diagnostic systems
Diffusion coefficient
Diffusion Magnetic Resonance Imaging - methods
Field strength
Heterogeneity
Humans
Image segmentation
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical imaging
Prostate cancer
Prostatic Neoplasms - pathology
Retrospective Studies
Statistical analysis
Statistical tests
the Prostate Imaging Reporting and Data System
Training
title Performance of Artificial Intelligence‐Aided Diagnosis System for Clinically Significant Prostate Cancer with MRI: A Diagnostic Comparison Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20Artificial%20Intelligence%E2%80%90Aided%20Diagnosis%20System%20for%20Clinically%20Significant%20Prostate%20Cancer%20with%20MRI:%20A%20Diagnostic%20Comparison%20Study&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Jiang,%20Ke%E2%80%90Wen&rft.date=2023-05&rft.volume=57&rft.issue=5&rft.spage=1352&rft.epage=1364&rft.pages=1352-1364&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.28427&rft_dat=%3Cproquest_cross%3E2724240042%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3577-520d31b2123637400a155ddaa6ce5d1fe4c1a137437a910b9f784348ae2c6d9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2795969147&rft_id=info:pmid/36222324&rfr_iscdi=true