Loading…
Untethered: using remote magnetic fields for regenerative medicine
Magnetic fields are increasingly being used for the remote, noncontact manipulation of cells and biomaterials for a wide range of regenerative medical (RM) applications. They have been deployed for their direct effects on biological systems or in conjunction with magnetic materials or magnetically t...
Saved in:
Published in: | Trends in biotechnology (Regular ed.) 2023-05, Vol.41 (5), p.615-631 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c426t-2f304b91a9824405e14f7da2bb113c3d2f89abca11af32cd6a78279ab5f5b8673 |
---|---|
cites | cdi_FETCH-LOGICAL-c426t-2f304b91a9824405e14f7da2bb113c3d2f89abca11af32cd6a78279ab5f5b8673 |
container_end_page | 631 |
container_issue | 5 |
container_start_page | 615 |
container_title | Trends in biotechnology (Regular ed.) |
container_volume | 41 |
creator | Chansoria, Parth Liu, Hao Christiansen, Michael G. Schürle-Finke, Simone Zenobi-Wong, Marcy |
description | Magnetic fields are increasingly being used for the remote, noncontact manipulation of cells and biomaterials for a wide range of regenerative medical (RM) applications. They have been deployed for their direct effects on biological systems or in conjunction with magnetic materials or magnetically tagged cells for a targeted therapeutic effect. In this work, we highlight the recent trends on the broad use of magnetic fields for the homing of therapeutic cells and particles at targeted tissue sites, biomimetic tissue fabrication, and control of cell fate and proliferation. We also survey the design and control principles of magnetic manipulation systems, including their capabilities and limitations, which can guide future research into developing more effective magnetic field-based regenerative strategies.
Magnetic fields offer distinct advantages over other remote manipulation strategies using acoustic, electrical, or optical energy for applications in regenerative medicine (RM).Magnetic fields are often deployed in conjunction with magnetic materials, but have also been used as a standalone stimulus for tissue regeneration or biofabrication.Magnetic fields have been used for supporting physiological functions of organs, homing of cells and therapeutic particles to a target site in vivo, development of drug- and disease-screening systems, stimulation of tissues in vitro and in vivo, and fabrication of biomimetic tissues.Studying the principles behind the generation of magnetic fields and their interactions with inorganic (e.g., magnetic nanoparticles) and organic (e.g., cells) materials can help us to develop effective RM strategies in the future. |
doi_str_mv | 10.1016/j.tibtech.2022.09.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2724240596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167779922002372</els_id><sourcerecordid>2724240596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-2f304b91a9824405e14f7da2bb113c3d2f89abca11af32cd6a78279ab5f5b8673</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMoun78BKXgxUvrJGmbxouo-AULXvQc0nSyZtltNUkX_PdGdvXgRU8DM8-8w7wvIccUCgq0Pp8X0bURzWvBgLECZAHAt8iENkLmHGS9TSaJE7kQUu6R_RDmkAgh6S7Z4zVjIKCZkOuXPmJ8RY_dRTYG188yj8shYrbUsx6jM5l1uOhCZgefRjPs0evoVgnAzhnX4yHZsXoR8GhTD8jL3e3zzUM-fbp_vLma5qZkdcyZ5VC2kmrZsLKECmlpRadZ21LKDe-YbaRujaZUW85MV2vRMJFala3aphb8gJytdd_88D5iiGrpgsHFQvc4jEExwUqWhGX9H5RTqEQtE3r6C50Po-_TI4o1AJSLSkCiqjVl_BCCR6vevFtq_6EoqK881Fxt8lBfeSiQKrmd9k426mOb_PrZ-g4gAZdrAJNzK4deBeOwN8lbjyaqbnB_nPgEymOdDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2800137570</pqid></control><display><type>article</type><title>Untethered: using remote magnetic fields for regenerative medicine</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Chansoria, Parth ; Liu, Hao ; Christiansen, Michael G. ; Schürle-Finke, Simone ; Zenobi-Wong, Marcy</creator><creatorcontrib>Chansoria, Parth ; Liu, Hao ; Christiansen, Michael G. ; Schürle-Finke, Simone ; Zenobi-Wong, Marcy</creatorcontrib><description>Magnetic fields are increasingly being used for the remote, noncontact manipulation of cells and biomaterials for a wide range of regenerative medical (RM) applications. They have been deployed for their direct effects on biological systems or in conjunction with magnetic materials or magnetically tagged cells for a targeted therapeutic effect. In this work, we highlight the recent trends on the broad use of magnetic fields for the homing of therapeutic cells and particles at targeted tissue sites, biomimetic tissue fabrication, and control of cell fate and proliferation. We also survey the design and control principles of magnetic manipulation systems, including their capabilities and limitations, which can guide future research into developing more effective magnetic field-based regenerative strategies.
Magnetic fields offer distinct advantages over other remote manipulation strategies using acoustic, electrical, or optical energy for applications in regenerative medicine (RM).Magnetic fields are often deployed in conjunction with magnetic materials, but have also been used as a standalone stimulus for tissue regeneration or biofabrication.Magnetic fields have been used for supporting physiological functions of organs, homing of cells and therapeutic particles to a target site in vivo, development of drug- and disease-screening systems, stimulation of tissues in vitro and in vivo, and fabrication of biomimetic tissues.Studying the principles behind the generation of magnetic fields and their interactions with inorganic (e.g., magnetic nanoparticles) and organic (e.g., cells) materials can help us to develop effective RM strategies in the future.</description><identifier>ISSN: 0167-7799</identifier><identifier>EISSN: 1879-3096</identifier><identifier>DOI: 10.1016/j.tibtech.2022.09.003</identifier><identifier>PMID: 36220708</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>biocompatible materials ; Biocompatible Materials - pharmacology ; Biological effects ; Biomaterials ; Biomedical materials ; Biomimetics ; Cell Differentiation ; Cell fate ; Fabrication ; Magnetic Fields ; Magnetic materials ; magnetism ; medicine ; Nanoparticles ; Polymers ; Regenerative Medicine ; therapeutics ; Tissue Engineering ; Trends</subject><ispartof>Trends in biotechnology (Regular ed.), 2023-05, Vol.41 (5), p.615-631</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><rights>2022. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-2f304b91a9824405e14f7da2bb113c3d2f89abca11af32cd6a78279ab5f5b8673</citedby><cites>FETCH-LOGICAL-c426t-2f304b91a9824405e14f7da2bb113c3d2f89abca11af32cd6a78279ab5f5b8673</cites><orcidid>0000-0002-8301-6870 ; 0000-0001-5693-1603 ; 0000-0002-6107-6848 ; 0000-0002-8522-9909 ; 0000-0002-6420-1616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36220708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chansoria, Parth</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Christiansen, Michael G.</creatorcontrib><creatorcontrib>Schürle-Finke, Simone</creatorcontrib><creatorcontrib>Zenobi-Wong, Marcy</creatorcontrib><title>Untethered: using remote magnetic fields for regenerative medicine</title><title>Trends in biotechnology (Regular ed.)</title><addtitle>Trends Biotechnol</addtitle><description>Magnetic fields are increasingly being used for the remote, noncontact manipulation of cells and biomaterials for a wide range of regenerative medical (RM) applications. They have been deployed for their direct effects on biological systems or in conjunction with magnetic materials or magnetically tagged cells for a targeted therapeutic effect. In this work, we highlight the recent trends on the broad use of magnetic fields for the homing of therapeutic cells and particles at targeted tissue sites, biomimetic tissue fabrication, and control of cell fate and proliferation. We also survey the design and control principles of magnetic manipulation systems, including their capabilities and limitations, which can guide future research into developing more effective magnetic field-based regenerative strategies.
Magnetic fields offer distinct advantages over other remote manipulation strategies using acoustic, electrical, or optical energy for applications in regenerative medicine (RM).Magnetic fields are often deployed in conjunction with magnetic materials, but have also been used as a standalone stimulus for tissue regeneration or biofabrication.Magnetic fields have been used for supporting physiological functions of organs, homing of cells and therapeutic particles to a target site in vivo, development of drug- and disease-screening systems, stimulation of tissues in vitro and in vivo, and fabrication of biomimetic tissues.Studying the principles behind the generation of magnetic fields and their interactions with inorganic (e.g., magnetic nanoparticles) and organic (e.g., cells) materials can help us to develop effective RM strategies in the future.</description><subject>biocompatible materials</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Biological effects</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>Cell Differentiation</subject><subject>Cell fate</subject><subject>Fabrication</subject><subject>Magnetic Fields</subject><subject>Magnetic materials</subject><subject>magnetism</subject><subject>medicine</subject><subject>Nanoparticles</subject><subject>Polymers</subject><subject>Regenerative Medicine</subject><subject>therapeutics</subject><subject>Tissue Engineering</subject><subject>Trends</subject><issn>0167-7799</issn><issn>1879-3096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAQhoMoun78BKXgxUvrJGmbxouo-AULXvQc0nSyZtltNUkX_PdGdvXgRU8DM8-8w7wvIccUCgq0Pp8X0bURzWvBgLECZAHAt8iENkLmHGS9TSaJE7kQUu6R_RDmkAgh6S7Z4zVjIKCZkOuXPmJ8RY_dRTYG188yj8shYrbUsx6jM5l1uOhCZgefRjPs0evoVgnAzhnX4yHZsXoR8GhTD8jL3e3zzUM-fbp_vLma5qZkdcyZ5VC2kmrZsLKECmlpRadZ21LKDe-YbaRujaZUW85MV2vRMJFala3aphb8gJytdd_88D5iiGrpgsHFQvc4jEExwUqWhGX9H5RTqEQtE3r6C50Po-_TI4o1AJSLSkCiqjVl_BCCR6vevFtq_6EoqK881Fxt8lBfeSiQKrmd9k426mOb_PrZ-g4gAZdrAJNzK4deBeOwN8lbjyaqbnB_nPgEymOdDw</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Chansoria, Parth</creator><creator>Liu, Hao</creator><creator>Christiansen, Michael G.</creator><creator>Schürle-Finke, Simone</creator><creator>Zenobi-Wong, Marcy</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8301-6870</orcidid><orcidid>https://orcid.org/0000-0001-5693-1603</orcidid><orcidid>https://orcid.org/0000-0002-6107-6848</orcidid><orcidid>https://orcid.org/0000-0002-8522-9909</orcidid><orcidid>https://orcid.org/0000-0002-6420-1616</orcidid></search><sort><creationdate>20230501</creationdate><title>Untethered: using remote magnetic fields for regenerative medicine</title><author>Chansoria, Parth ; Liu, Hao ; Christiansen, Michael G. ; Schürle-Finke, Simone ; Zenobi-Wong, Marcy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-2f304b91a9824405e14f7da2bb113c3d2f89abca11af32cd6a78279ab5f5b8673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>biocompatible materials</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Biological effects</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>Cell Differentiation</topic><topic>Cell fate</topic><topic>Fabrication</topic><topic>Magnetic Fields</topic><topic>Magnetic materials</topic><topic>magnetism</topic><topic>medicine</topic><topic>Nanoparticles</topic><topic>Polymers</topic><topic>Regenerative Medicine</topic><topic>therapeutics</topic><topic>Tissue Engineering</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chansoria, Parth</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Christiansen, Michael G.</creatorcontrib><creatorcontrib>Schürle-Finke, Simone</creatorcontrib><creatorcontrib>Zenobi-Wong, Marcy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in biotechnology (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chansoria, Parth</au><au>Liu, Hao</au><au>Christiansen, Michael G.</au><au>Schürle-Finke, Simone</au><au>Zenobi-Wong, Marcy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Untethered: using remote magnetic fields for regenerative medicine</atitle><jtitle>Trends in biotechnology (Regular ed.)</jtitle><addtitle>Trends Biotechnol</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>41</volume><issue>5</issue><spage>615</spage><epage>631</epage><pages>615-631</pages><issn>0167-7799</issn><eissn>1879-3096</eissn><abstract>Magnetic fields are increasingly being used for the remote, noncontact manipulation of cells and biomaterials for a wide range of regenerative medical (RM) applications. They have been deployed for their direct effects on biological systems or in conjunction with magnetic materials or magnetically tagged cells for a targeted therapeutic effect. In this work, we highlight the recent trends on the broad use of magnetic fields for the homing of therapeutic cells and particles at targeted tissue sites, biomimetic tissue fabrication, and control of cell fate and proliferation. We also survey the design and control principles of magnetic manipulation systems, including their capabilities and limitations, which can guide future research into developing more effective magnetic field-based regenerative strategies.
Magnetic fields offer distinct advantages over other remote manipulation strategies using acoustic, electrical, or optical energy for applications in regenerative medicine (RM).Magnetic fields are often deployed in conjunction with magnetic materials, but have also been used as a standalone stimulus for tissue regeneration or biofabrication.Magnetic fields have been used for supporting physiological functions of organs, homing of cells and therapeutic particles to a target site in vivo, development of drug- and disease-screening systems, stimulation of tissues in vitro and in vivo, and fabrication of biomimetic tissues.Studying the principles behind the generation of magnetic fields and their interactions with inorganic (e.g., magnetic nanoparticles) and organic (e.g., cells) materials can help us to develop effective RM strategies in the future.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>36220708</pmid><doi>10.1016/j.tibtech.2022.09.003</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8301-6870</orcidid><orcidid>https://orcid.org/0000-0001-5693-1603</orcidid><orcidid>https://orcid.org/0000-0002-6107-6848</orcidid><orcidid>https://orcid.org/0000-0002-8522-9909</orcidid><orcidid>https://orcid.org/0000-0002-6420-1616</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7799 |
ispartof | Trends in biotechnology (Regular ed.), 2023-05, Vol.41 (5), p.615-631 |
issn | 0167-7799 1879-3096 |
language | eng |
recordid | cdi_proquest_miscellaneous_2724240596 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | biocompatible materials Biocompatible Materials - pharmacology Biological effects Biomaterials Biomedical materials Biomimetics Cell Differentiation Cell fate Fabrication Magnetic Fields Magnetic materials magnetism medicine Nanoparticles Polymers Regenerative Medicine therapeutics Tissue Engineering Trends |
title | Untethered: using remote magnetic fields for regenerative medicine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Untethered:%20using%20remote%20magnetic%20fields%20for%20regenerative%20medicine&rft.jtitle=Trends%20in%20biotechnology%20(Regular%20ed.)&rft.au=Chansoria,%20Parth&rft.date=2023-05-01&rft.volume=41&rft.issue=5&rft.spage=615&rft.epage=631&rft.pages=615-631&rft.issn=0167-7799&rft.eissn=1879-3096&rft_id=info:doi/10.1016/j.tibtech.2022.09.003&rft_dat=%3Cproquest_cross%3E2724240596%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-2f304b91a9824405e14f7da2bb113c3d2f89abca11af32cd6a78279ab5f5b8673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2800137570&rft_id=info:pmid/36220708&rfr_iscdi=true |