Loading…

Numerically Implemented Perturbation Method for the Nonlinear Magnetic Moment of an Anisotropic Superconductor

We present a method to compute the magnetic moment of a bulk, finite-size, three-dimensional, anisotropic superconductor. Our numerically implemented perturbative procedure is based on a solution of the nonlinear Maxwell–London electrodynamic equations, where we include the nonlinear relation betwee...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 1997-09, Vol.136 (2), p.337-353
Main Authors: Žutić, Igor, Valls, Oriol T.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c317t-606eb492e956a700e67c389f7db203ae11783cab3d3b520b7d5a2916b0a6ef263
cites cdi_FETCH-LOGICAL-c317t-606eb492e956a700e67c389f7db203ae11783cab3d3b520b7d5a2916b0a6ef263
container_end_page 353
container_issue 2
container_start_page 337
container_title Journal of computational physics
container_volume 136
creator Žutić, Igor
Valls, Oriol T.
description We present a method to compute the magnetic moment of a bulk, finite-size, three-dimensional, anisotropic superconductor. Our numerically implemented perturbative procedure is based on a solution of the nonlinear Maxwell–London electrodynamic equations, where we include the nonlinear relation between current and gauge invariant velocity. The method exploits the small ratio of the finite penetration depths to the sample size. We show how to treat the open boundary conditions over an infinite domain and the continuity requirement at the interface. We demonstrate how our method substantially reduces the computational work required, and discuss its implementation to an oblate spheroid. The numerical solution is obtained from a finite-difference method. We briefly discuss the relevance of this work to similar problems in other fields.
doi_str_mv 10.1006/jcph.1997.5739
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27243416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999197957399</els_id><sourcerecordid>27243416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-606eb492e956a700e67c389f7db203ae11783cab3d3b520b7d5a2916b0a6ef263</originalsourceid><addsrcrecordid>eNp1kDFv2zAQhYmgBeKmWTNz6ib3SEqkOBpG2wSI0wBJZoKiTjEDiVRJqkD-fSy4a6c33PsODx8hNwy2DEB-f3Pzccu0VttGCX1BNgw0VFwx-YlsADirtNbsknzJ-Q0A2qZuNyQ8LBMm7-w4vtO7aR5xwlCwp4-YypI6W3wM9IDlGHs6xETLEelDDKMPaBM92NeAxTt6iCtH40BtoLvgcywpzqfD0zJjcjH0iysxfSWfBztmvP6XV-Tl54_n_W11__vX3X53XznBVKkkSOxqzVE30ioAlMqJVg-q7zgIi4ypVjjbiV50DYdO9Y3lmskOrMSBS3FFvp3_zin-WTAXM_nscBxtwLhkwxWvRc3W4vZcdCnmnHAwc_KTTe-GgVm1mlWrWbWaVesJaM8Anub_9ZhMdh6Dw94ndMX00f8P_QCdnoDl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27243416</pqid></control><display><type>article</type><title>Numerically Implemented Perturbation Method for the Nonlinear Magnetic Moment of an Anisotropic Superconductor</title><source>Elsevier</source><creator>Žutić, Igor ; Valls, Oriol T.</creator><creatorcontrib>Žutić, Igor ; Valls, Oriol T.</creatorcontrib><description>We present a method to compute the magnetic moment of a bulk, finite-size, three-dimensional, anisotropic superconductor. Our numerically implemented perturbative procedure is based on a solution of the nonlinear Maxwell–London electrodynamic equations, where we include the nonlinear relation between current and gauge invariant velocity. The method exploits the small ratio of the finite penetration depths to the sample size. We show how to treat the open boundary conditions over an infinite domain and the continuity requirement at the interface. We demonstrate how our method substantially reduces the computational work required, and discuss its implementation to an oblate spheroid. The numerical solution is obtained from a finite-difference method. We briefly discuss the relevance of this work to similar problems in other fields.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1006/jcph.1997.5739</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of computational physics, 1997-09, Vol.136 (2), p.337-353</ispartof><rights>1997 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-606eb492e956a700e67c389f7db203ae11783cab3d3b520b7d5a2916b0a6ef263</citedby><cites>FETCH-LOGICAL-c317t-606eb492e956a700e67c389f7db203ae11783cab3d3b520b7d5a2916b0a6ef263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Žutić, Igor</creatorcontrib><creatorcontrib>Valls, Oriol T.</creatorcontrib><title>Numerically Implemented Perturbation Method for the Nonlinear Magnetic Moment of an Anisotropic Superconductor</title><title>Journal of computational physics</title><description>We present a method to compute the magnetic moment of a bulk, finite-size, three-dimensional, anisotropic superconductor. Our numerically implemented perturbative procedure is based on a solution of the nonlinear Maxwell–London electrodynamic equations, where we include the nonlinear relation between current and gauge invariant velocity. The method exploits the small ratio of the finite penetration depths to the sample size. We show how to treat the open boundary conditions over an infinite domain and the continuity requirement at the interface. We demonstrate how our method substantially reduces the computational work required, and discuss its implementation to an oblate spheroid. The numerical solution is obtained from a finite-difference method. We briefly discuss the relevance of this work to similar problems in other fields.</description><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1kDFv2zAQhYmgBeKmWTNz6ib3SEqkOBpG2wSI0wBJZoKiTjEDiVRJqkD-fSy4a6c33PsODx8hNwy2DEB-f3Pzccu0VttGCX1BNgw0VFwx-YlsADirtNbsknzJ-Q0A2qZuNyQ8LBMm7-w4vtO7aR5xwlCwp4-YypI6W3wM9IDlGHs6xETLEelDDKMPaBM92NeAxTt6iCtH40BtoLvgcywpzqfD0zJjcjH0iysxfSWfBztmvP6XV-Tl54_n_W11__vX3X53XznBVKkkSOxqzVE30ioAlMqJVg-q7zgIi4ypVjjbiV50DYdO9Y3lmskOrMSBS3FFvp3_zin-WTAXM_nscBxtwLhkwxWvRc3W4vZcdCnmnHAwc_KTTe-GgVm1mlWrWbWaVesJaM8Anub_9ZhMdh6Dw94ndMX00f8P_QCdnoDl</recordid><startdate>19970915</startdate><enddate>19970915</enddate><creator>Žutić, Igor</creator><creator>Valls, Oriol T.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19970915</creationdate><title>Numerically Implemented Perturbation Method for the Nonlinear Magnetic Moment of an Anisotropic Superconductor</title><author>Žutić, Igor ; Valls, Oriol T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-606eb492e956a700e67c389f7db203ae11783cab3d3b520b7d5a2916b0a6ef263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Žutić, Igor</creatorcontrib><creatorcontrib>Valls, Oriol T.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Žutić, Igor</au><au>Valls, Oriol T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerically Implemented Perturbation Method for the Nonlinear Magnetic Moment of an Anisotropic Superconductor</atitle><jtitle>Journal of computational physics</jtitle><date>1997-09-15</date><risdate>1997</risdate><volume>136</volume><issue>2</issue><spage>337</spage><epage>353</epage><pages>337-353</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We present a method to compute the magnetic moment of a bulk, finite-size, three-dimensional, anisotropic superconductor. Our numerically implemented perturbative procedure is based on a solution of the nonlinear Maxwell–London electrodynamic equations, where we include the nonlinear relation between current and gauge invariant velocity. The method exploits the small ratio of the finite penetration depths to the sample size. We show how to treat the open boundary conditions over an infinite domain and the continuity requirement at the interface. We demonstrate how our method substantially reduces the computational work required, and discuss its implementation to an oblate spheroid. The numerical solution is obtained from a finite-difference method. We briefly discuss the relevance of this work to similar problems in other fields.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jcph.1997.5739</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 1997-09, Vol.136 (2), p.337-353
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_27243416
source Elsevier
title Numerically Implemented Perturbation Method for the Nonlinear Magnetic Moment of an Anisotropic Superconductor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerically%20Implemented%20Perturbation%20Method%20for%20the%20Nonlinear%20Magnetic%20Moment%20of%20an%20Anisotropic%20Superconductor&rft.jtitle=Journal%20of%20computational%20physics&rft.au=%C5%BDuti%C4%87,%20Igor&rft.date=1997-09-15&rft.volume=136&rft.issue=2&rft.spage=337&rft.epage=353&rft.pages=337-353&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1006/jcph.1997.5739&rft_dat=%3Cproquest_cross%3E27243416%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-606eb492e956a700e67c389f7db203ae11783cab3d3b520b7d5a2916b0a6ef263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27243416&rft_id=info:pmid/&rfr_iscdi=true