Loading…
Temporal mirror-symmetry in functional signals recorded from rat barrel cortex with optical coherence tomography
Abstract Functional optical coherence tomography (fOCT) detects activity-dependent light scattering changes in micro-structures of neural tissue, drawing attention as in vivo volumetric functional imaging technique at a sub-columnar level. There are 2 plausible origins for the light scattering chang...
Saved in:
Published in: | Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2023-04, Vol.33 (8), p.4904-4914 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c329t-4cf26acc5b67c491f01b834df734971634c062ceba8a86ef0445444a533fd9343 |
---|---|
cites | cdi_FETCH-LOGICAL-c329t-4cf26acc5b67c491f01b834df734971634c062ceba8a86ef0445444a533fd9343 |
container_end_page | 4914 |
container_issue | 8 |
container_start_page | 4904 |
container_title | Cerebral cortex (New York, N.Y. 1991) |
container_volume | 33 |
creator | Chiu, Kai-Shih Tanifuji, Manabu Sun, Chia-Wei Rajagopalan, Uma Maheswari Nakamichi, Yu |
description | Abstract
Functional optical coherence tomography (fOCT) detects activity-dependent light scattering changes in micro-structures of neural tissue, drawing attention as in vivo volumetric functional imaging technique at a sub-columnar level. There are 2 plausible origins for the light scattering changes: (i) hemodynamic responses such as changes in blood volume and in density of blood cells and (ii) reorientation of dipoles in cellular membrane. However, it has not been clarified which is the major contributor to fOCT signals. Furthermore, previous studies showed both increase and decrease of reflectivity as fOCT signals, making interpretation more difficult. We proposed combination of fOCT with Fourier imaging and adaptive statistics to the rat barrel cortex. Active voxels revealed barrels elongating throughout layers with mini-columns in superficial layers consistent with physiological studies, suggesting that active voxels revealed by fOCT reflect spatial patterns of activated neurons. These voxels included voxels with negative changes in reflectivity and those with positive changes in reflectivity. However, they were temporally mirror-symmetric, suggesting that they share common sources. It is hard to explain that hemodynamic responses elicit positive signals in some voxels and negative signals in the other. On the other hand, considering membrane dipoles, polarities of OCT signals can be positive and negative depending on orientations of scattering particles relative to the incident light. Therefore, the present study suggests that fOCT signals are induced by the reorientation of membrane dipoles. |
doi_str_mv | 10.1093/cercor/bhac388 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2724582227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/cercor/bhac388</oup_id><sourcerecordid>2724582227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-4cf26acc5b67c491f01b834df734971634c062ceba8a86ef0445444a533fd9343</originalsourceid><addsrcrecordid>eNqFkLtPwzAQhy0EgvJYGZFHGNL6ldeIEC-pEkuZI8c506A6DmdH0P8eoxZWpjvdffc76SPkkrM5Z7VcGEDjcdGutZFVdUBmXBUsE7yuD1PPVJlJwfkJOQ3hnTFeilwckxNZCFHyupqRcQVu9Kg31PWIHrOwdQ4ibmk_UDsNJvZ-SNvQv6USKEJ610FHLXpHUUfaakTY0DSO8EU_-7imfoy90T-zNSAMBmj0zr-hHtfbc3JkUxBc7OsZeX24X909ZcuXx-e722VmpKhjpowVhTYmb4vSqJpbxttKqs6WUtUlL6QyrBAGWl3pqgDLlMqVUjqX0na1VPKMXO9yR_QfE4TYuD4Y2Gz0AH4KjSiFyiuRPCR0vkMN-hAQbDNi7zRuG86aH8vNznKzt5wOrvbZU-ug-8N_tSbgZgf4afwv7BsWl4tP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724582227</pqid></control><display><type>article</type><title>Temporal mirror-symmetry in functional signals recorded from rat barrel cortex with optical coherence tomography</title><source>Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)</source><creator>Chiu, Kai-Shih ; Tanifuji, Manabu ; Sun, Chia-Wei ; Rajagopalan, Uma Maheswari ; Nakamichi, Yu</creator><creatorcontrib>Chiu, Kai-Shih ; Tanifuji, Manabu ; Sun, Chia-Wei ; Rajagopalan, Uma Maheswari ; Nakamichi, Yu</creatorcontrib><description>Abstract
Functional optical coherence tomography (fOCT) detects activity-dependent light scattering changes in micro-structures of neural tissue, drawing attention as in vivo volumetric functional imaging technique at a sub-columnar level. There are 2 plausible origins for the light scattering changes: (i) hemodynamic responses such as changes in blood volume and in density of blood cells and (ii) reorientation of dipoles in cellular membrane. However, it has not been clarified which is the major contributor to fOCT signals. Furthermore, previous studies showed both increase and decrease of reflectivity as fOCT signals, making interpretation more difficult. We proposed combination of fOCT with Fourier imaging and adaptive statistics to the rat barrel cortex. Active voxels revealed barrels elongating throughout layers with mini-columns in superficial layers consistent with physiological studies, suggesting that active voxels revealed by fOCT reflect spatial patterns of activated neurons. These voxels included voxels with negative changes in reflectivity and those with positive changes in reflectivity. However, they were temporally mirror-symmetric, suggesting that they share common sources. It is hard to explain that hemodynamic responses elicit positive signals in some voxels and negative signals in the other. On the other hand, considering membrane dipoles, polarities of OCT signals can be positive and negative depending on orientations of scattering particles relative to the incident light. Therefore, the present study suggests that fOCT signals are induced by the reorientation of membrane dipoles.</description><identifier>ISSN: 1047-3211</identifier><identifier>EISSN: 1460-2199</identifier><identifier>DOI: 10.1093/cercor/bhac388</identifier><identifier>PMID: 36227198</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Animals ; Cerebral Cortex ; Neurons - physiology ; Rats ; Tomography, Optical Coherence - methods</subject><ispartof>Cerebral cortex (New York, N.Y. 1991), 2023-04, Vol.33 (8), p.4904-4914</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-4cf26acc5b67c491f01b834df734971634c062ceba8a86ef0445444a533fd9343</citedby><cites>FETCH-LOGICAL-c329t-4cf26acc5b67c491f01b834df734971634c062ceba8a86ef0445444a533fd9343</cites><orcidid>0000-0003-2685-2108 ; 0000-0003-1128-980X ; 0000-0001-7754-7774 ; 0000-0002-1563-2065 ; 0000-0001-9769-8019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36227198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiu, Kai-Shih</creatorcontrib><creatorcontrib>Tanifuji, Manabu</creatorcontrib><creatorcontrib>Sun, Chia-Wei</creatorcontrib><creatorcontrib>Rajagopalan, Uma Maheswari</creatorcontrib><creatorcontrib>Nakamichi, Yu</creatorcontrib><title>Temporal mirror-symmetry in functional signals recorded from rat barrel cortex with optical coherence tomography</title><title>Cerebral cortex (New York, N.Y. 1991)</title><addtitle>Cereb Cortex</addtitle><description>Abstract
Functional optical coherence tomography (fOCT) detects activity-dependent light scattering changes in micro-structures of neural tissue, drawing attention as in vivo volumetric functional imaging technique at a sub-columnar level. There are 2 plausible origins for the light scattering changes: (i) hemodynamic responses such as changes in blood volume and in density of blood cells and (ii) reorientation of dipoles in cellular membrane. However, it has not been clarified which is the major contributor to fOCT signals. Furthermore, previous studies showed both increase and decrease of reflectivity as fOCT signals, making interpretation more difficult. We proposed combination of fOCT with Fourier imaging and adaptive statistics to the rat barrel cortex. Active voxels revealed barrels elongating throughout layers with mini-columns in superficial layers consistent with physiological studies, suggesting that active voxels revealed by fOCT reflect spatial patterns of activated neurons. These voxels included voxels with negative changes in reflectivity and those with positive changes in reflectivity. However, they were temporally mirror-symmetric, suggesting that they share common sources. It is hard to explain that hemodynamic responses elicit positive signals in some voxels and negative signals in the other. On the other hand, considering membrane dipoles, polarities of OCT signals can be positive and negative depending on orientations of scattering particles relative to the incident light. Therefore, the present study suggests that fOCT signals are induced by the reorientation of membrane dipoles.</description><subject>Animals</subject><subject>Cerebral Cortex</subject><subject>Neurons - physiology</subject><subject>Rats</subject><subject>Tomography, Optical Coherence - methods</subject><issn>1047-3211</issn><issn>1460-2199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkLtPwzAQhy0EgvJYGZFHGNL6ldeIEC-pEkuZI8c506A6DmdH0P8eoxZWpjvdffc76SPkkrM5Z7VcGEDjcdGutZFVdUBmXBUsE7yuD1PPVJlJwfkJOQ3hnTFeilwckxNZCFHyupqRcQVu9Kg31PWIHrOwdQ4ibmk_UDsNJvZ-SNvQv6USKEJ610FHLXpHUUfaakTY0DSO8EU_-7imfoy90T-zNSAMBmj0zr-hHtfbc3JkUxBc7OsZeX24X909ZcuXx-e722VmpKhjpowVhTYmb4vSqJpbxttKqs6WUtUlL6QyrBAGWl3pqgDLlMqVUjqX0na1VPKMXO9yR_QfE4TYuD4Y2Gz0AH4KjSiFyiuRPCR0vkMN-hAQbDNi7zRuG86aH8vNznKzt5wOrvbZU-ug-8N_tSbgZgf4afwv7BsWl4tP</recordid><startdate>20230404</startdate><enddate>20230404</enddate><creator>Chiu, Kai-Shih</creator><creator>Tanifuji, Manabu</creator><creator>Sun, Chia-Wei</creator><creator>Rajagopalan, Uma Maheswari</creator><creator>Nakamichi, Yu</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2685-2108</orcidid><orcidid>https://orcid.org/0000-0003-1128-980X</orcidid><orcidid>https://orcid.org/0000-0001-7754-7774</orcidid><orcidid>https://orcid.org/0000-0002-1563-2065</orcidid><orcidid>https://orcid.org/0000-0001-9769-8019</orcidid></search><sort><creationdate>20230404</creationdate><title>Temporal mirror-symmetry in functional signals recorded from rat barrel cortex with optical coherence tomography</title><author>Chiu, Kai-Shih ; Tanifuji, Manabu ; Sun, Chia-Wei ; Rajagopalan, Uma Maheswari ; Nakamichi, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-4cf26acc5b67c491f01b834df734971634c062ceba8a86ef0445444a533fd9343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Cerebral Cortex</topic><topic>Neurons - physiology</topic><topic>Rats</topic><topic>Tomography, Optical Coherence - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiu, Kai-Shih</creatorcontrib><creatorcontrib>Tanifuji, Manabu</creatorcontrib><creatorcontrib>Sun, Chia-Wei</creatorcontrib><creatorcontrib>Rajagopalan, Uma Maheswari</creatorcontrib><creatorcontrib>Nakamichi, Yu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiu, Kai-Shih</au><au>Tanifuji, Manabu</au><au>Sun, Chia-Wei</au><au>Rajagopalan, Uma Maheswari</au><au>Nakamichi, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal mirror-symmetry in functional signals recorded from rat barrel cortex with optical coherence tomography</atitle><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle><addtitle>Cereb Cortex</addtitle><date>2023-04-04</date><risdate>2023</risdate><volume>33</volume><issue>8</issue><spage>4904</spage><epage>4914</epage><pages>4904-4914</pages><issn>1047-3211</issn><eissn>1460-2199</eissn><abstract>Abstract
Functional optical coherence tomography (fOCT) detects activity-dependent light scattering changes in micro-structures of neural tissue, drawing attention as in vivo volumetric functional imaging technique at a sub-columnar level. There are 2 plausible origins for the light scattering changes: (i) hemodynamic responses such as changes in blood volume and in density of blood cells and (ii) reorientation of dipoles in cellular membrane. However, it has not been clarified which is the major contributor to fOCT signals. Furthermore, previous studies showed both increase and decrease of reflectivity as fOCT signals, making interpretation more difficult. We proposed combination of fOCT with Fourier imaging and adaptive statistics to the rat barrel cortex. Active voxels revealed barrels elongating throughout layers with mini-columns in superficial layers consistent with physiological studies, suggesting that active voxels revealed by fOCT reflect spatial patterns of activated neurons. These voxels included voxels with negative changes in reflectivity and those with positive changes in reflectivity. However, they were temporally mirror-symmetric, suggesting that they share common sources. It is hard to explain that hemodynamic responses elicit positive signals in some voxels and negative signals in the other. On the other hand, considering membrane dipoles, polarities of OCT signals can be positive and negative depending on orientations of scattering particles relative to the incident light. Therefore, the present study suggests that fOCT signals are induced by the reorientation of membrane dipoles.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>36227198</pmid><doi>10.1093/cercor/bhac388</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2685-2108</orcidid><orcidid>https://orcid.org/0000-0003-1128-980X</orcidid><orcidid>https://orcid.org/0000-0001-7754-7774</orcidid><orcidid>https://orcid.org/0000-0002-1563-2065</orcidid><orcidid>https://orcid.org/0000-0001-9769-8019</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-3211 |
ispartof | Cerebral cortex (New York, N.Y. 1991), 2023-04, Vol.33 (8), p.4904-4914 |
issn | 1047-3211 1460-2199 |
language | eng |
recordid | cdi_proquest_miscellaneous_2724582227 |
source | Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list) |
subjects | Animals Cerebral Cortex Neurons - physiology Rats Tomography, Optical Coherence - methods |
title | Temporal mirror-symmetry in functional signals recorded from rat barrel cortex with optical coherence tomography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A41%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20mirror-symmetry%20in%20functional%20signals%20recorded%20from%20rat%20barrel%20cortex%20with%20optical%20coherence%20tomography&rft.jtitle=Cerebral%20cortex%20(New%20York,%20N.Y.%201991)&rft.au=Chiu,%20Kai-Shih&rft.date=2023-04-04&rft.volume=33&rft.issue=8&rft.spage=4904&rft.epage=4914&rft.pages=4904-4914&rft.issn=1047-3211&rft.eissn=1460-2199&rft_id=info:doi/10.1093/cercor/bhac388&rft_dat=%3Cproquest_cross%3E2724582227%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c329t-4cf26acc5b67c491f01b834df734971634c062ceba8a86ef0445444a533fd9343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2724582227&rft_id=info:pmid/36227198&rft_oup_id=10.1093/cercor/bhac388&rfr_iscdi=true |